{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
module Plutarch.Internal.Semigroup (
PSemigroup (..),
PMonoid (..),
PAnd (..),
POr (..),
PXor (..),
) where
import Data.ByteString qualified as BS
import Data.Kind (Type)
import Data.Text qualified as Text
import GHC.Generics (Generic)
import Generics.SOP qualified as SOP
import Plutarch.Builtin.BLS (
PBuiltinBLS12_381_G1_Element,
PBuiltinBLS12_381_G2_Element,
PBuiltinBLS12_381_MlResult,
)
import Plutarch.Builtin.Bool (
PBool (PFalse, PTrue),
pif,
pif',
pnot,
)
import Plutarch.Builtin.ByteString (
PByteString,
pandBS,
pindexBS,
plengthBS,
porBS,
ppadding,
preplicateBS,
pxorBS,
)
import Plutarch.Builtin.Integer (PInteger)
import Plutarch.Builtin.String (PString)
import Plutarch.Builtin.Unit (PUnit, punit)
import Plutarch.Internal.Eq (PEq ((#==)))
import Plutarch.Internal.Lift (
DeriveNewtypePLiftable,
PLiftable (AsHaskell),
PLifted (PLifted),
PlutusRepr,
)
import Plutarch.Internal.Numeric (
PNatural,
PPositive,
pbySquaringDefault,
pdiv,
pnaturalToPositiveCPS,
pscaleNatural,
pscalePositive,
pzero,
(#*),
(#+),
)
import Plutarch.Internal.Ord (POrd)
import Plutarch.Internal.Other (pto)
import Plutarch.Internal.PlutusType (PlutusType (PInner), pcon)
import Plutarch.Internal.Term (
S,
Term,
plet,
punsafeBuiltin,
punsafeConstantInternal,
(#),
(#$),
)
import Plutarch.Repr.Newtype (DeriveNewtypePlutusType (DeriveNewtypePlutusType))
import Plutarch.Unsafe (punsafeDowncast)
import PlutusCore qualified as PLC
import Universe (Includes)
class PSemigroup (a :: S -> Type) where
(#<>) :: forall (s :: S). Term s a -> Term s a -> Term s a
default (#<>) ::
forall (s :: S).
PSemigroup (PInner a) =>
Term s a ->
Term s a ->
Term s a
Term s a
x #<> Term s a
y = Term s (PInner a) -> Term s a
forall (s :: S) (a :: PType). Term s (PInner a) -> Term s a
punsafeDowncast (Term s (PInner a) -> Term s a) -> Term s (PInner a) -> Term s a
forall a b. (a -> b) -> a -> b
$ Term s a -> Term s (PInner a)
forall (s :: S) (a :: PType). Term s a -> Term s (PInner a)
pto Term s a
x Term s (PInner a) -> Term s (PInner a) -> Term s (PInner a)
forall (s :: S).
Term s (PInner a) -> Term s (PInner a) -> Term s (PInner a)
forall (a :: PType) (s :: S).
PSemigroup a =>
Term s a -> Term s a -> Term s a
#<> Term s a -> Term s (PInner a)
forall (s :: S) (a :: PType). Term s a -> Term s (PInner a)
pto Term s a
y
{-# INLINEABLE pstimes #-}
pstimes :: forall (s :: S). Term s PPositive -> Term s a -> Term s a
pstimes Term s PPositive
p Term s a
x = (forall (s :: S). Term s a -> Term s a -> Term s a)
-> Term s a -> Term s PPositive -> Term s a
forall (a :: PType) (s :: S).
(forall (s' :: S). Term s' a -> Term s' a -> Term s' a)
-> Term s a -> Term s PPositive -> Term s a
pbySquaringDefault Term s' a -> Term s' a -> Term s' a
forall (s :: S). Term s a -> Term s a -> Term s a
forall (a :: PType) (s :: S).
PSemigroup a =>
Term s a -> Term s a -> Term s a
(#<>) Term s a
x Term s PPositive
p
infixr 6 #<>
instance PSemigroup PUnit where
{-# INLINEABLE (#<>) #-}
Term s PUnit
x #<> :: forall (s :: S). Term s PUnit -> Term s PUnit -> Term s PUnit
#<> Term s PUnit
y = Term s PUnit -> (Term s PUnit -> Term s PUnit) -> Term s PUnit
forall (s :: S) (a :: PType) (b :: PType).
Term s a -> (Term s a -> Term s b) -> Term s b
plet Term s PUnit
x ((Term s PUnit -> Term s PUnit) -> Term s PUnit)
-> (Term s PUnit -> Term s PUnit) -> Term s PUnit
forall a b. (a -> b) -> a -> b
$ \Term s PUnit
_ -> Term s PUnit -> (Term s PUnit -> Term s PUnit) -> Term s PUnit
forall (s :: S) (a :: PType) (b :: PType).
Term s a -> (Term s a -> Term s b) -> Term s b
plet Term s PUnit
y ((Term s PUnit -> Term s PUnit) -> Term s PUnit)
-> (Term s PUnit -> Term s PUnit) -> Term s PUnit
forall a b. (a -> b) -> a -> b
$ Term s PUnit -> Term s PUnit -> Term s PUnit
forall a b. a -> b -> a
const Term s PUnit
forall (s :: S). Term s PUnit
punit
{-# INLINEABLE pstimes #-}
pstimes :: forall (s :: S). Term s PPositive -> Term s PUnit -> Term s PUnit
pstimes Term s PPositive
p Term s PUnit
x = Term s PPositive
-> (Term s PPositive -> Term s PUnit) -> Term s PUnit
forall (s :: S) (a :: PType) (b :: PType).
Term s a -> (Term s a -> Term s b) -> Term s b
plet Term s PPositive
p ((Term s PPositive -> Term s PUnit) -> Term s PUnit)
-> (Term s PPositive -> Term s PUnit) -> Term s PUnit
forall a b. (a -> b) -> a -> b
$ \Term s PPositive
_ -> Term s PUnit -> (Term s PUnit -> Term s PUnit) -> Term s PUnit
forall (s :: S) (a :: PType) (b :: PType).
Term s a -> (Term s a -> Term s b) -> Term s b
plet Term s PUnit
x ((Term s PUnit -> Term s PUnit) -> Term s PUnit)
-> (Term s PUnit -> Term s PUnit) -> Term s PUnit
forall a b. (a -> b) -> a -> b
$ Term s PUnit -> Term s PUnit -> Term s PUnit
forall a b. a -> b -> a
const Term s PUnit
forall (s :: S). Term s PUnit
punit
instance PSemigroup PString where
{-# INLINEABLE (#<>) #-}
Term s PString
x #<> :: forall (s :: S). Term s PString -> Term s PString -> Term s PString
#<> Term s PString
y = DefaultFun -> Term s (PString :--> (PString :--> PString))
forall (s :: S) (a :: PType). DefaultFun -> Term s a
punsafeBuiltin DefaultFun
PLC.AppendString Term s (PString :--> (PString :--> PString))
-> Term s PString -> Term s (PString :--> PString)
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s PString
x Term s (PString :--> PString) -> Term s PString -> Term s PString
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s PString
y
instance PSemigroup PByteString where
{-# INLINEABLE (#<>) #-}
Term s PByteString
x #<> :: forall (s :: S).
Term s PByteString -> Term s PByteString -> Term s PByteString
#<> Term s PByteString
y = DefaultFun
-> Term s (PByteString :--> (PByteString :--> PByteString))
forall (s :: S) (a :: PType). DefaultFun -> Term s a
punsafeBuiltin DefaultFun
PLC.AppendByteString Term s (PByteString :--> (PByteString :--> PByteString))
-> Term s PByteString -> Term s (PByteString :--> PByteString)
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s PByteString
x Term s (PByteString :--> PByteString)
-> Term s PByteString -> Term s PByteString
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s PByteString
y
{-# INLINEABLE pstimes #-}
pstimes :: forall (s :: S).
Term s PPositive -> Term s PByteString -> Term s PByteString
pstimes Term s PPositive
p Term s PByteString
bs = Term s PByteString
-> (Term s PByteString -> Term s PByteString) -> Term s PByteString
forall (s :: S) (a :: PType) (b :: PType).
Term s a -> (Term s a -> Term s b) -> Term s b
plet Term s PByteString
bs ((Term s PByteString -> Term s PByteString) -> Term s PByteString)
-> (Term s PByteString -> Term s PByteString) -> Term s PByteString
forall a b. (a -> b) -> a -> b
$ \Term s PByteString
bs' ->
Term s PBool
-> Term s PByteString -> Term s PByteString -> Term s PByteString
forall (a :: PType) (s :: S).
Term s PBool -> Term s a -> Term s a -> Term s a
pif
(Term s (PByteString :--> PInteger)
forall (s :: S). Term s (PByteString :--> PInteger)
plengthBS Term s (PByteString :--> PInteger)
-> Term s PByteString -> Term s PInteger
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s PByteString
bs' Term s PInteger -> Term s PInteger -> Term s PBool
forall (s :: S). Term s PInteger -> Term s PInteger -> Term s PBool
forall (t :: PType) (s :: S).
PEq t =>
Term s t -> Term s t -> Term s PBool
#== Term s PInteger
1)
(Term s (PInteger :--> (PByte :--> PByteString))
forall (s :: S). Term s (PInteger :--> (PByte :--> PByteString))
preplicateBS Term s (PInteger :--> (PByte :--> PByteString))
-> Term s PInteger -> Term s (PByte :--> PByteString)
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s PPositive -> Term s (PInner PPositive)
forall (s :: S) (a :: PType). Term s a -> Term s (PInner a)
pto Term s PPositive
p Term s (PByte :--> PByteString)
-> Term s PByte -> Term s PByteString
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
#$ Term s (PByteString :--> (PInteger :--> PByte))
forall (s :: S). Term s (PByteString :--> (PInteger :--> PByte))
pindexBS Term s (PByteString :--> (PInteger :--> PByte))
-> Term s PByteString -> Term s (PInteger :--> PByte)
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s PByteString
bs' Term s (PInteger :--> PByte) -> Term s PInteger -> Term s PByte
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s PInteger
0)
((forall (s :: S).
Term s PByteString -> Term s PByteString -> Term s PByteString)
-> Term s PByteString -> Term s PPositive -> Term s PByteString
forall (a :: PType) (s :: S).
(forall (s' :: S). Term s' a -> Term s' a -> Term s' a)
-> Term s a -> Term s PPositive -> Term s a
pbySquaringDefault Term s' PByteString -> Term s' PByteString -> Term s' PByteString
forall (s :: S).
Term s PByteString -> Term s PByteString -> Term s PByteString
forall (a :: PType) (s :: S).
PSemigroup a =>
Term s a -> Term s a -> Term s a
(#<>) Term s PByteString
bs' Term s PPositive
p)
instance PSemigroup PBuiltinBLS12_381_G1_Element where
{-# INLINEABLE (#<>) #-}
#<> :: forall (s :: S).
Term s PBuiltinBLS12_381_G1_Element
-> Term s PBuiltinBLS12_381_G1_Element
-> Term s PBuiltinBLS12_381_G1_Element
(#<>) = Term s PBuiltinBLS12_381_G1_Element
-> Term s PBuiltinBLS12_381_G1_Element
-> Term s PBuiltinBLS12_381_G1_Element
forall (s :: S).
Term s PBuiltinBLS12_381_G1_Element
-> Term s PBuiltinBLS12_381_G1_Element
-> Term s PBuiltinBLS12_381_G1_Element
forall (a :: PType) (s :: S).
PAdditiveSemigroup a =>
Term s a -> Term s a -> Term s a
(#+)
{-# INLINEABLE pstimes #-}
pstimes :: forall (s :: S).
Term s PPositive
-> Term s PBuiltinBLS12_381_G1_Element
-> Term s PBuiltinBLS12_381_G1_Element
pstimes Term s PPositive
p Term s PBuiltinBLS12_381_G1_Element
x = Term s PBuiltinBLS12_381_G1_Element
-> Term s PPositive -> Term s PBuiltinBLS12_381_G1_Element
forall (s :: S).
Term s PBuiltinBLS12_381_G1_Element
-> Term s PPositive -> Term s PBuiltinBLS12_381_G1_Element
forall (a :: PType) (s :: S).
PAdditiveSemigroup a =>
Term s a -> Term s PPositive -> Term s a
pscalePositive Term s PBuiltinBLS12_381_G1_Element
x Term s PPositive
p
instance PSemigroup PBuiltinBLS12_381_G2_Element where
{-# INLINEABLE (#<>) #-}
#<> :: forall (s :: S).
Term s PBuiltinBLS12_381_G2_Element
-> Term s PBuiltinBLS12_381_G2_Element
-> Term s PBuiltinBLS12_381_G2_Element
(#<>) = Term s PBuiltinBLS12_381_G2_Element
-> Term s PBuiltinBLS12_381_G2_Element
-> Term s PBuiltinBLS12_381_G2_Element
forall (s :: S).
Term s PBuiltinBLS12_381_G2_Element
-> Term s PBuiltinBLS12_381_G2_Element
-> Term s PBuiltinBLS12_381_G2_Element
forall (a :: PType) (s :: S).
PAdditiveSemigroup a =>
Term s a -> Term s a -> Term s a
(#+)
{-# INLINEABLE pstimes #-}
pstimes :: forall (s :: S).
Term s PPositive
-> Term s PBuiltinBLS12_381_G2_Element
-> Term s PBuiltinBLS12_381_G2_Element
pstimes Term s PPositive
p Term s PBuiltinBLS12_381_G2_Element
x = Term s PBuiltinBLS12_381_G2_Element
-> Term s PPositive -> Term s PBuiltinBLS12_381_G2_Element
forall (s :: S).
Term s PBuiltinBLS12_381_G2_Element
-> Term s PPositive -> Term s PBuiltinBLS12_381_G2_Element
forall (a :: PType) (s :: S).
PAdditiveSemigroup a =>
Term s a -> Term s PPositive -> Term s a
pscalePositive Term s PBuiltinBLS12_381_G2_Element
x Term s PPositive
p
instance PSemigroup PBuiltinBLS12_381_MlResult where
{-# INLINEABLE (#<>) #-}
#<> :: forall (s :: S).
Term s PBuiltinBLS12_381_MlResult
-> Term s PBuiltinBLS12_381_MlResult
-> Term s PBuiltinBLS12_381_MlResult
(#<>) = Term s PBuiltinBLS12_381_MlResult
-> Term s PBuiltinBLS12_381_MlResult
-> Term s PBuiltinBLS12_381_MlResult
forall (s :: S).
Term s PBuiltinBLS12_381_MlResult
-> Term s PBuiltinBLS12_381_MlResult
-> Term s PBuiltinBLS12_381_MlResult
forall (a :: PType) (s :: S).
PMultiplicativeSemigroup a =>
Term s a -> Term s a -> Term s a
(#*)
class PSemigroup a => PMonoid (a :: S -> Type) where
pmempty :: forall (s :: S). Term s a
default pmempty ::
forall (s :: S).
PMonoid (PInner a) =>
Term s a
pmempty = Term s (PInner a) -> Term s a
forall (s :: S) (a :: PType). Term s (PInner a) -> Term s a
punsafeDowncast Term s (PInner a)
forall (s :: S). Term s (PInner a)
forall (a :: PType) (s :: S). PMonoid a => Term s a
pmempty
{-# INLINEABLE pmtimes #-}
pmtimes :: forall (s :: S). Term s PNatural -> Term s a -> Term s a
pmtimes Term s PNatural
n Term s a
x = Term s a
-> (Term s PPositive -> Term s a) -> Term s PNatural -> Term s a
forall (a :: PType) (s :: S).
Term s a
-> (Term s PPositive -> Term s a) -> Term s PNatural -> Term s a
pnaturalToPositiveCPS Term s a
forall (s :: S). Term s a
forall (a :: PType) (s :: S). PMonoid a => Term s a
pmempty (Term s PPositive -> Term s a -> Term s a
forall (s :: S). Term s PPositive -> Term s a -> Term s a
forall (a :: PType) (s :: S).
PSemigroup a =>
Term s PPositive -> Term s a -> Term s a
`pstimes` Term s a
x) Term s PNatural
n
instance PMonoid PUnit where
{-# INLINEABLE pmempty #-}
pmempty :: forall (s :: S). Term s PUnit
pmempty = Term s PUnit
forall (s :: S). Term s PUnit
punit
{-# INLINEABLE pmtimes #-}
pmtimes :: forall (s :: S). Term s PNatural -> Term s PUnit -> Term s PUnit
pmtimes Term s PNatural
n Term s PUnit
x = Term s PNatural
-> (Term s PNatural -> Term s PUnit) -> Term s PUnit
forall (s :: S) (a :: PType) (b :: PType).
Term s a -> (Term s a -> Term s b) -> Term s b
plet Term s PNatural
n ((Term s PNatural -> Term s PUnit) -> Term s PUnit)
-> (Term s PNatural -> Term s PUnit) -> Term s PUnit
forall a b. (a -> b) -> a -> b
$ \Term s PNatural
_ -> Term s PUnit -> (Term s PUnit -> Term s PUnit) -> Term s PUnit
forall (s :: S) (a :: PType) (b :: PType).
Term s a -> (Term s a -> Term s b) -> Term s b
plet Term s PUnit
x ((Term s PUnit -> Term s PUnit) -> Term s PUnit)
-> (Term s PUnit -> Term s PUnit) -> Term s PUnit
forall a b. (a -> b) -> a -> b
$ Term s PUnit -> Term s PUnit -> Term s PUnit
forall a b. a -> b -> a
const Term s PUnit
forall (s :: S). Term s PUnit
punit
instance PMonoid PString where
{-# INLINEABLE pmempty #-}
pmempty :: forall (s :: S). Term s PString
pmempty = Some @Type (ValueOf DefaultUni) -> Term s PString
forall (s :: S) (a :: PType).
Some @Type (ValueOf DefaultUni) -> Term s a
punsafeConstantInternal (Some @Type (ValueOf DefaultUni) -> Term s PString)
-> Some @Type (ValueOf DefaultUni) -> Term s PString
forall a b. (a -> b) -> a -> b
$ Text -> Some @Type (ValueOf DefaultUni)
forall a (uni :: Type -> Type).
Contains @Type uni a =>
a -> Some @Type (ValueOf uni)
PLC.someValue Text
Text.empty
instance PMonoid PByteString where
{-# INLINEABLE pmempty #-}
pmempty :: forall (s :: S). Term s PByteString
pmempty = Some @Type (ValueOf DefaultUni) -> Term s PByteString
forall (s :: S) (a :: PType).
Some @Type (ValueOf DefaultUni) -> Term s a
punsafeConstantInternal (Some @Type (ValueOf DefaultUni) -> Term s PByteString)
-> Some @Type (ValueOf DefaultUni) -> Term s PByteString
forall a b. (a -> b) -> a -> b
$ ByteString -> Some @Type (ValueOf DefaultUni)
forall a (uni :: Type -> Type).
Contains @Type uni a =>
a -> Some @Type (ValueOf uni)
PLC.someValue ByteString
BS.empty
instance PMonoid PBuiltinBLS12_381_G1_Element where
{-# INLINEABLE pmempty #-}
pmempty :: forall (s :: S). Term s PBuiltinBLS12_381_G1_Element
pmempty = Term s PBuiltinBLS12_381_G1_Element
forall (s :: S). Term s PBuiltinBLS12_381_G1_Element
forall (a :: PType) (s :: S). PAdditiveMonoid a => Term s a
pzero
{-# INLINEABLE pmtimes #-}
pmtimes :: forall (s :: S).
Term s PNatural
-> Term s PBuiltinBLS12_381_G1_Element
-> Term s PBuiltinBLS12_381_G1_Element
pmtimes Term s PNatural
n Term s PBuiltinBLS12_381_G1_Element
x = Term s PBuiltinBLS12_381_G1_Element
-> Term s PNatural -> Term s PBuiltinBLS12_381_G1_Element
forall (s :: S).
Term s PBuiltinBLS12_381_G1_Element
-> Term s PNatural -> Term s PBuiltinBLS12_381_G1_Element
forall (a :: PType) (s :: S).
PAdditiveMonoid a =>
Term s a -> Term s PNatural -> Term s a
pscaleNatural Term s PBuiltinBLS12_381_G1_Element
x Term s PNatural
n
instance PMonoid PBuiltinBLS12_381_G2_Element where
{-# INLINEABLE pmempty #-}
pmempty :: forall (s :: S). Term s PBuiltinBLS12_381_G2_Element
pmempty = Term s PBuiltinBLS12_381_G2_Element
forall (s :: S). Term s PBuiltinBLS12_381_G2_Element
forall (a :: PType) (s :: S). PAdditiveMonoid a => Term s a
pzero
{-# INLINEABLE pmtimes #-}
pmtimes :: forall (s :: S).
Term s PNatural
-> Term s PBuiltinBLS12_381_G2_Element
-> Term s PBuiltinBLS12_381_G2_Element
pmtimes Term s PNatural
n Term s PBuiltinBLS12_381_G2_Element
x = Term s PBuiltinBLS12_381_G2_Element
-> Term s PNatural -> Term s PBuiltinBLS12_381_G2_Element
forall (s :: S).
Term s PBuiltinBLS12_381_G2_Element
-> Term s PNatural -> Term s PBuiltinBLS12_381_G2_Element
forall (a :: PType) (s :: S).
PAdditiveMonoid a =>
Term s a -> Term s PNatural -> Term s a
pscaleNatural Term s PBuiltinBLS12_381_G2_Element
x Term s PNatural
n
newtype PAnd (a :: S -> Type) (s :: S)
= PAnd (Term s a)
deriving stock
(
(forall x. PAnd a s -> Rep (PAnd a s) x)
-> (forall x. Rep (PAnd a s) x -> PAnd a s) -> Generic (PAnd a s)
forall x. Rep (PAnd a s) x -> PAnd a s
forall x. PAnd a s -> Rep (PAnd a s) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall (a :: PType) (s :: S) x. Rep (PAnd a s) x -> PAnd a s
forall (a :: PType) (s :: S) x. PAnd a s -> Rep (PAnd a s) x
$cfrom :: forall (a :: PType) (s :: S) x. PAnd a s -> Rep (PAnd a s) x
from :: forall x. PAnd a s -> Rep (PAnd a s) x
$cto :: forall (a :: PType) (s :: S) x. Rep (PAnd a s) x -> PAnd a s
to :: forall x. Rep (PAnd a s) x -> PAnd a s
Generic
)
deriving anyclass
(
All @[Type] (SListI @Type) (Code (PAnd a s))
All @[Type] (SListI @Type) (Code (PAnd a s)) =>
(PAnd a s -> Rep (PAnd a s))
-> (Rep (PAnd a s) -> PAnd a s) -> Generic (PAnd a s)
Rep (PAnd a s) -> PAnd a s
PAnd a s -> Rep (PAnd a s)
forall a.
All @[Type] (SListI @Type) (Code a) =>
(a -> Rep a) -> (Rep a -> a) -> Generic a
forall (a :: PType) (s :: S).
All @[Type] (SListI @Type) (Code (PAnd a s))
forall (a :: PType) (s :: S). Rep (PAnd a s) -> PAnd a s
forall (a :: PType) (s :: S). PAnd a s -> Rep (PAnd a s)
$cfrom :: forall (a :: PType) (s :: S). PAnd a s -> Rep (PAnd a s)
from :: PAnd a s -> Rep (PAnd a s)
$cto :: forall (a :: PType) (s :: S). Rep (PAnd a s) -> PAnd a s
to :: Rep (PAnd a s) -> PAnd a s
SOP.Generic
,
(forall (s :: S).
Term s (PAnd a) -> Term s (PAnd a) -> Term s PBool)
-> PEq (PAnd a)
forall (s :: S). Term s (PAnd a) -> Term s (PAnd a) -> Term s PBool
forall (a :: PType) (s :: S).
PEq a =>
Term s (PAnd a) -> Term s (PAnd a) -> Term s PBool
forall (t :: PType).
(forall (s :: S). Term s t -> Term s t -> Term s PBool) -> PEq t
$c#== :: forall (a :: PType) (s :: S).
PEq a =>
Term s (PAnd a) -> Term s (PAnd a) -> Term s PBool
#== :: forall (s :: S). Term s (PAnd a) -> Term s (PAnd a) -> Term s PBool
PEq
,
PEq (PAnd a)
PEq (PAnd a) =>
(forall (s :: S).
Term s (PAnd a) -> Term s (PAnd a) -> Term s PBool)
-> (forall (s :: S).
Term s (PAnd a) -> Term s (PAnd a) -> Term s PBool)
-> (forall (s :: S).
Term s (PAnd a) -> Term s (PAnd a) -> Term s (PAnd a))
-> (forall (s :: S).
Term s (PAnd a) -> Term s (PAnd a) -> Term s (PAnd a))
-> POrd (PAnd a)
forall (s :: S). Term s (PAnd a) -> Term s (PAnd a) -> Term s PBool
forall (s :: S).
Term s (PAnd a) -> Term s (PAnd a) -> Term s (PAnd a)
forall (t :: PType).
PEq t =>
(forall (s :: S). Term s t -> Term s t -> Term s PBool)
-> (forall (s :: S). Term s t -> Term s t -> Term s PBool)
-> (forall (s :: S). Term s t -> Term s t -> Term s t)
-> (forall (s :: S). Term s t -> Term s t -> Term s t)
-> POrd t
forall (a :: PType). POrd a => PEq (PAnd a)
forall (a :: PType) (s :: S).
POrd a =>
Term s (PAnd a) -> Term s (PAnd a) -> Term s PBool
forall (a :: PType) (s :: S).
POrd a =>
Term s (PAnd a) -> Term s (PAnd a) -> Term s (PAnd a)
$c#<= :: forall (a :: PType) (s :: S).
POrd a =>
Term s (PAnd a) -> Term s (PAnd a) -> Term s PBool
#<= :: forall (s :: S). Term s (PAnd a) -> Term s (PAnd a) -> Term s PBool
$c#< :: forall (a :: PType) (s :: S).
POrd a =>
Term s (PAnd a) -> Term s (PAnd a) -> Term s PBool
#< :: forall (s :: S). Term s (PAnd a) -> Term s (PAnd a) -> Term s PBool
$cpmax :: forall (a :: PType) (s :: S).
POrd a =>
Term s (PAnd a) -> Term s (PAnd a) -> Term s (PAnd a)
pmax :: forall (s :: S).
Term s (PAnd a) -> Term s (PAnd a) -> Term s (PAnd a)
$cpmin :: forall (a :: PType) (s :: S).
POrd a =>
Term s (PAnd a) -> Term s (PAnd a) -> Term s (PAnd a)
pmin :: forall (s :: S).
Term s (PAnd a) -> Term s (PAnd a) -> Term s (PAnd a)
POrd
)
deriving
(
(forall (s :: S). PAnd a s -> Term s (PInner (PAnd a)))
-> (forall (s :: S) (b :: PType).
Term s (PInner (PAnd a)) -> (PAnd a s -> Term s b) -> Term s b)
-> PlutusType (PAnd a)
forall (s :: S). PAnd a s -> Term s (PInner (PAnd a))
forall (s :: S) (b :: PType).
Term s (PInner (PAnd a)) -> (PAnd a s -> Term s b) -> Term s b
forall (a :: PType).
(forall (s :: S). a s -> Term s (PInner a))
-> (forall (s :: S) (b :: PType).
Term s (PInner a) -> (a s -> Term s b) -> Term s b)
-> PlutusType a
forall (a :: PType) (s :: S). PAnd a s -> Term s (PInner (PAnd a))
forall (a :: PType) (s :: S) (b :: PType).
Term s (PInner (PAnd a)) -> (PAnd a s -> Term s b) -> Term s b
$cpcon' :: forall (a :: PType) (s :: S). PAnd a s -> Term s (PInner (PAnd a))
pcon' :: forall (s :: S). PAnd a s -> Term s (PInner (PAnd a))
$cpmatch' :: forall (a :: PType) (s :: S) (b :: PType).
Term s (PInner (PAnd a)) -> (PAnd a s -> Term s b) -> Term s b
pmatch' :: forall (s :: S) (b :: PType).
Term s (PInner (PAnd a)) -> (PAnd a s -> Term s b) -> Term s b
PlutusType
)
via (DeriveNewtypePlutusType (PAnd a))
deriving via
DeriveNewtypePLiftable (PAnd a) (AsHaskell a)
instance
(PLiftable a, PLC.DefaultUni `Includes` PlutusRepr a) => PLiftable (PAnd a)
instance PSemigroup (PAnd PBool) where
{-# INLINEABLE (#<>) #-}
Term s (PAnd PBool)
x #<> :: forall (s :: S).
Term s (PAnd PBool) -> Term s (PAnd PBool) -> Term s (PAnd PBool)
#<> Term s (PAnd PBool)
y = Term s (PBool :--> (PAnd PBool :--> (PAnd PBool :--> PAnd PBool)))
forall (a :: PType) (s :: S).
Term s (PBool :--> (a :--> (a :--> a)))
pif' Term s (PBool :--> (PAnd PBool :--> (PAnd PBool :--> PAnd PBool)))
-> Term s PBool
-> Term s (PAnd PBool :--> (PAnd PBool :--> PAnd PBool))
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (PAnd PBool) -> Term s (PInner (PAnd PBool))
forall (s :: S) (a :: PType). Term s a -> Term s (PInner a)
pto Term s (PAnd PBool)
x Term s (PAnd PBool :--> (PAnd PBool :--> PAnd PBool))
-> Term s (PAnd PBool) -> Term s (PAnd PBool :--> PAnd PBool)
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (PAnd PBool)
y Term s (PAnd PBool :--> PAnd PBool)
-> Term s (PAnd PBool) -> Term s (PAnd PBool)
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (PAnd PBool)
x
{-# INLINEABLE pstimes #-}
pstimes :: forall (s :: S).
Term s PPositive -> Term s (PAnd PBool) -> Term s (PAnd PBool)
pstimes Term s PPositive
p Term s (PAnd PBool)
x = Term s PPositive
-> (Term s PPositive -> Term s (PAnd PBool)) -> Term s (PAnd PBool)
forall (s :: S) (a :: PType) (b :: PType).
Term s a -> (Term s a -> Term s b) -> Term s b
plet Term s PPositive
p ((Term s PPositive -> Term s (PAnd PBool)) -> Term s (PAnd PBool))
-> (Term s PPositive -> Term s (PAnd PBool)) -> Term s (PAnd PBool)
forall a b. (a -> b) -> a -> b
$ Term s (PAnd PBool) -> Term s PPositive -> Term s (PAnd PBool)
forall a b. a -> b -> a
const Term s (PAnd PBool)
x
instance PMonoid (PAnd PBool) where
{-# INLINEABLE pmempty #-}
pmempty :: forall (s :: S). Term s (PAnd PBool)
pmempty = PAnd PBool s -> Term s (PAnd PBool)
forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon (PAnd PBool s -> Term s (PAnd PBool))
-> (PBool s -> PAnd PBool s) -> PBool s -> Term s (PAnd PBool)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term s PBool -> PAnd PBool s
forall (a :: PType) (s :: S). Term s a -> PAnd a s
PAnd (Term s PBool -> PAnd PBool s)
-> (PBool s -> Term s PBool) -> PBool s -> PAnd PBool s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. PBool s -> Term s PBool
forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon (PBool s -> Term s (PAnd PBool)) -> PBool s -> Term s (PAnd PBool)
forall a b. (a -> b) -> a -> b
$ PBool s
forall (s :: S). PBool s
PTrue
instance PSemigroup (PAnd PByteString) where
{-# INLINEABLE (#<>) #-}
Term s (PAnd PByteString)
x #<> :: forall (s :: S).
Term s (PAnd PByteString)
-> Term s (PAnd PByteString) -> Term s (PAnd PByteString)
#<> Term s (PAnd PByteString)
y = Term s (PInner (PAnd PByteString)) -> Term s (PAnd PByteString)
forall (s :: S) (a :: PType). Term s (PInner a) -> Term s a
punsafeDowncast (Term s (PInner (PAnd PByteString)) -> Term s (PAnd PByteString))
-> Term s (PInner (PAnd PByteString)) -> Term s (PAnd PByteString)
forall a b. (a -> b) -> a -> b
$ Term
s
(PLogicOpSemantics
:--> (PByteString :--> (PByteString :--> PByteString)))
forall (s :: S).
Term
s
(PLogicOpSemantics
:--> (PByteString :--> (PByteString :--> PByteString)))
pandBS Term
s
(PLogicOpSemantics
:--> (PByteString :--> (PByteString :--> PByteString)))
-> Term s PLogicOpSemantics
-> Term s (PByteString :--> (PByteString :--> PByteString))
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s PLogicOpSemantics
forall (s :: S). Term s PLogicOpSemantics
ppadding Term s (PByteString :--> (PByteString :--> PByteString))
-> Term s PByteString -> Term s (PByteString :--> PByteString)
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (PAnd PByteString) -> Term s (PInner (PAnd PByteString))
forall (s :: S) (a :: PType). Term s a -> Term s (PInner a)
pto Term s (PAnd PByteString)
x Term s (PByteString :--> PByteString)
-> Term s PByteString -> Term s PByteString
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (PAnd PByteString) -> Term s (PInner (PAnd PByteString))
forall (s :: S) (a :: PType). Term s a -> Term s (PInner a)
pto Term s (PAnd PByteString)
y
{-# INLINEABLE pstimes #-}
pstimes :: forall (s :: S).
Term s PPositive
-> Term s (PAnd PByteString) -> Term s (PAnd PByteString)
pstimes Term s PPositive
p Term s (PAnd PByteString)
x = Term s PPositive
-> (Term s PPositive -> Term s (PAnd PByteString))
-> Term s (PAnd PByteString)
forall (s :: S) (a :: PType) (b :: PType).
Term s a -> (Term s a -> Term s b) -> Term s b
plet Term s PPositive
p ((Term s PPositive -> Term s (PAnd PByteString))
-> Term s (PAnd PByteString))
-> (Term s PPositive -> Term s (PAnd PByteString))
-> Term s (PAnd PByteString)
forall a b. (a -> b) -> a -> b
$ Term s (PAnd PByteString)
-> Term s PPositive -> Term s (PAnd PByteString)
forall a b. a -> b -> a
const Term s (PAnd PByteString)
x
instance PMonoid (PAnd PByteString) where
{-# INLINEABLE pmempty #-}
pmempty :: forall (s :: S). Term s (PAnd PByteString)
pmempty = PAnd PByteString s -> Term s (PAnd PByteString)
forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon (PAnd PByteString s -> Term s (PAnd PByteString))
-> (Term s PByteString -> PAnd PByteString s)
-> Term s PByteString
-> Term s (PAnd PByteString)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term s PByteString -> PAnd PByteString s
forall (a :: PType) (s :: S). Term s a -> PAnd a s
PAnd (Term s PByteString -> Term s (PAnd PByteString))
-> Term s PByteString -> Term s (PAnd PByteString)
forall a b. (a -> b) -> a -> b
$ Term s PByteString
forall a. Monoid a => a
mempty
newtype POr (a :: S -> Type) (s :: S)
= POr (Term s a)
deriving stock
(
(forall x. POr a s -> Rep (POr a s) x)
-> (forall x. Rep (POr a s) x -> POr a s) -> Generic (POr a s)
forall x. Rep (POr a s) x -> POr a s
forall x. POr a s -> Rep (POr a s) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall (a :: PType) (s :: S) x. Rep (POr a s) x -> POr a s
forall (a :: PType) (s :: S) x. POr a s -> Rep (POr a s) x
$cfrom :: forall (a :: PType) (s :: S) x. POr a s -> Rep (POr a s) x
from :: forall x. POr a s -> Rep (POr a s) x
$cto :: forall (a :: PType) (s :: S) x. Rep (POr a s) x -> POr a s
to :: forall x. Rep (POr a s) x -> POr a s
Generic
)
deriving anyclass
(
All @[Type] (SListI @Type) (Code (POr a s))
All @[Type] (SListI @Type) (Code (POr a s)) =>
(POr a s -> Rep (POr a s))
-> (Rep (POr a s) -> POr a s) -> Generic (POr a s)
Rep (POr a s) -> POr a s
POr a s -> Rep (POr a s)
forall a.
All @[Type] (SListI @Type) (Code a) =>
(a -> Rep a) -> (Rep a -> a) -> Generic a
forall (a :: PType) (s :: S).
All @[Type] (SListI @Type) (Code (POr a s))
forall (a :: PType) (s :: S). Rep (POr a s) -> POr a s
forall (a :: PType) (s :: S). POr a s -> Rep (POr a s)
$cfrom :: forall (a :: PType) (s :: S). POr a s -> Rep (POr a s)
from :: POr a s -> Rep (POr a s)
$cto :: forall (a :: PType) (s :: S). Rep (POr a s) -> POr a s
to :: Rep (POr a s) -> POr a s
SOP.Generic
,
(forall (s :: S). Term s (POr a) -> Term s (POr a) -> Term s PBool)
-> PEq (POr a)
forall (s :: S). Term s (POr a) -> Term s (POr a) -> Term s PBool
forall (a :: PType) (s :: S).
PEq a =>
Term s (POr a) -> Term s (POr a) -> Term s PBool
forall (t :: PType).
(forall (s :: S). Term s t -> Term s t -> Term s PBool) -> PEq t
$c#== :: forall (a :: PType) (s :: S).
PEq a =>
Term s (POr a) -> Term s (POr a) -> Term s PBool
#== :: forall (s :: S). Term s (POr a) -> Term s (POr a) -> Term s PBool
PEq
,
PEq (POr a)
PEq (POr a) =>
(forall (s :: S). Term s (POr a) -> Term s (POr a) -> Term s PBool)
-> (forall (s :: S).
Term s (POr a) -> Term s (POr a) -> Term s PBool)
-> (forall (s :: S).
Term s (POr a) -> Term s (POr a) -> Term s (POr a))
-> (forall (s :: S).
Term s (POr a) -> Term s (POr a) -> Term s (POr a))
-> POrd (POr a)
forall (s :: S). Term s (POr a) -> Term s (POr a) -> Term s PBool
forall (s :: S). Term s (POr a) -> Term s (POr a) -> Term s (POr a)
forall (t :: PType).
PEq t =>
(forall (s :: S). Term s t -> Term s t -> Term s PBool)
-> (forall (s :: S). Term s t -> Term s t -> Term s PBool)
-> (forall (s :: S). Term s t -> Term s t -> Term s t)
-> (forall (s :: S). Term s t -> Term s t -> Term s t)
-> POrd t
forall (a :: PType). POrd a => PEq (POr a)
forall (a :: PType) (s :: S).
POrd a =>
Term s (POr a) -> Term s (POr a) -> Term s PBool
forall (a :: PType) (s :: S).
POrd a =>
Term s (POr a) -> Term s (POr a) -> Term s (POr a)
$c#<= :: forall (a :: PType) (s :: S).
POrd a =>
Term s (POr a) -> Term s (POr a) -> Term s PBool
#<= :: forall (s :: S). Term s (POr a) -> Term s (POr a) -> Term s PBool
$c#< :: forall (a :: PType) (s :: S).
POrd a =>
Term s (POr a) -> Term s (POr a) -> Term s PBool
#< :: forall (s :: S). Term s (POr a) -> Term s (POr a) -> Term s PBool
$cpmax :: forall (a :: PType) (s :: S).
POrd a =>
Term s (POr a) -> Term s (POr a) -> Term s (POr a)
pmax :: forall (s :: S). Term s (POr a) -> Term s (POr a) -> Term s (POr a)
$cpmin :: forall (a :: PType) (s :: S).
POrd a =>
Term s (POr a) -> Term s (POr a) -> Term s (POr a)
pmin :: forall (s :: S). Term s (POr a) -> Term s (POr a) -> Term s (POr a)
POrd
)
deriving
(
(forall (s :: S). POr a s -> Term s (PInner (POr a)))
-> (forall (s :: S) (b :: PType).
Term s (PInner (POr a)) -> (POr a s -> Term s b) -> Term s b)
-> PlutusType (POr a)
forall (s :: S). POr a s -> Term s (PInner (POr a))
forall (s :: S) (b :: PType).
Term s (PInner (POr a)) -> (POr a s -> Term s b) -> Term s b
forall (a :: PType).
(forall (s :: S). a s -> Term s (PInner a))
-> (forall (s :: S) (b :: PType).
Term s (PInner a) -> (a s -> Term s b) -> Term s b)
-> PlutusType a
forall (a :: PType) (s :: S). POr a s -> Term s (PInner (POr a))
forall (a :: PType) (s :: S) (b :: PType).
Term s (PInner (POr a)) -> (POr a s -> Term s b) -> Term s b
$cpcon' :: forall (a :: PType) (s :: S). POr a s -> Term s (PInner (POr a))
pcon' :: forall (s :: S). POr a s -> Term s (PInner (POr a))
$cpmatch' :: forall (a :: PType) (s :: S) (b :: PType).
Term s (PInner (POr a)) -> (POr a s -> Term s b) -> Term s b
pmatch' :: forall (s :: S) (b :: PType).
Term s (PInner (POr a)) -> (POr a s -> Term s b) -> Term s b
PlutusType
)
via (DeriveNewtypePlutusType (POr a))
deriving via
DeriveNewtypePLiftable (POr a) (AsHaskell a)
instance
(PLiftable a, PLC.DefaultUni `Includes` PlutusRepr a) => PLiftable (POr a)
instance PSemigroup (POr PBool) where
{-# INLINEABLE (#<>) #-}
Term s (POr PBool)
x #<> :: forall (s :: S).
Term s (POr PBool) -> Term s (POr PBool) -> Term s (POr PBool)
#<> Term s (POr PBool)
y = Term s PBool
-> Term s (POr PBool) -> Term s (POr PBool) -> Term s (POr PBool)
forall (a :: PType) (s :: S).
Term s PBool -> Term s a -> Term s a -> Term s a
pif (Term s (POr PBool) -> Term s (PInner (POr PBool))
forall (s :: S) (a :: PType). Term s a -> Term s (PInner a)
pto Term s (POr PBool)
x) Term s (POr PBool)
x Term s (POr PBool)
y
{-# INLINEABLE pstimes #-}
pstimes :: forall (s :: S).
Term s PPositive -> Term s (POr PBool) -> Term s (POr PBool)
pstimes Term s PPositive
p Term s (POr PBool)
x = Term s PPositive
-> (Term s PPositive -> Term s (POr PBool)) -> Term s (POr PBool)
forall (s :: S) (a :: PType) (b :: PType).
Term s a -> (Term s a -> Term s b) -> Term s b
plet Term s PPositive
p ((Term s PPositive -> Term s (POr PBool)) -> Term s (POr PBool))
-> (Term s PPositive -> Term s (POr PBool)) -> Term s (POr PBool)
forall a b. (a -> b) -> a -> b
$ Term s (POr PBool) -> Term s PPositive -> Term s (POr PBool)
forall a b. a -> b -> a
const Term s (POr PBool)
x
instance PMonoid (POr PBool) where
{-# INLINEABLE pmempty #-}
pmempty :: forall (s :: S). Term s (POr PBool)
pmempty = POr PBool s -> Term s (POr PBool)
forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon (POr PBool s -> Term s (POr PBool))
-> (PBool s -> POr PBool s) -> PBool s -> Term s (POr PBool)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term s PBool -> POr PBool s
forall (a :: PType) (s :: S). Term s a -> POr a s
POr (Term s PBool -> POr PBool s)
-> (PBool s -> Term s PBool) -> PBool s -> POr PBool s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. PBool s -> Term s PBool
forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon (PBool s -> Term s (POr PBool)) -> PBool s -> Term s (POr PBool)
forall a b. (a -> b) -> a -> b
$ PBool s
forall (s :: S). PBool s
PFalse
instance PSemigroup (POr PByteString) where
{-# INLINEABLE (#<>) #-}
Term s (POr PByteString)
x #<> :: forall (s :: S).
Term s (POr PByteString)
-> Term s (POr PByteString) -> Term s (POr PByteString)
#<> Term s (POr PByteString)
y = Term s (PInner (POr PByteString)) -> Term s (POr PByteString)
forall (s :: S) (a :: PType). Term s (PInner a) -> Term s a
punsafeDowncast (Term s (PInner (POr PByteString)) -> Term s (POr PByteString))
-> Term s (PInner (POr PByteString)) -> Term s (POr PByteString)
forall a b. (a -> b) -> a -> b
$ Term
s
(PLogicOpSemantics
:--> (PByteString :--> (PByteString :--> PByteString)))
forall (s :: S).
Term
s
(PLogicOpSemantics
:--> (PByteString :--> (PByteString :--> PByteString)))
porBS Term
s
(PLogicOpSemantics
:--> (PByteString :--> (PByteString :--> PByteString)))
-> Term s PLogicOpSemantics
-> Term s (PByteString :--> (PByteString :--> PByteString))
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s PLogicOpSemantics
forall (s :: S). Term s PLogicOpSemantics
ppadding Term s (PByteString :--> (PByteString :--> PByteString))
-> Term s PByteString -> Term s (PByteString :--> PByteString)
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (POr PByteString) -> Term s (PInner (POr PByteString))
forall (s :: S) (a :: PType). Term s a -> Term s (PInner a)
pto Term s (POr PByteString)
x Term s (PByteString :--> PByteString)
-> Term s PByteString -> Term s PByteString
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (POr PByteString) -> Term s (PInner (POr PByteString))
forall (s :: S) (a :: PType). Term s a -> Term s (PInner a)
pto Term s (POr PByteString)
y
{-# INLINEABLE pstimes #-}
pstimes :: forall (s :: S).
Term s PPositive
-> Term s (POr PByteString) -> Term s (POr PByteString)
pstimes Term s PPositive
p Term s (POr PByteString)
x = Term s PPositive
-> (Term s PPositive -> Term s (POr PByteString))
-> Term s (POr PByteString)
forall (s :: S) (a :: PType) (b :: PType).
Term s a -> (Term s a -> Term s b) -> Term s b
plet Term s PPositive
p ((Term s PPositive -> Term s (POr PByteString))
-> Term s (POr PByteString))
-> (Term s PPositive -> Term s (POr PByteString))
-> Term s (POr PByteString)
forall a b. (a -> b) -> a -> b
$ Term s (POr PByteString)
-> Term s PPositive -> Term s (POr PByteString)
forall a b. a -> b -> a
const Term s (POr PByteString)
x
instance PMonoid (POr PByteString) where
{-# INLINEABLE pmempty #-}
pmempty :: forall (s :: S). Term s (POr PByteString)
pmempty = POr PByteString s -> Term s (POr PByteString)
forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon (POr PByteString s -> Term s (POr PByteString))
-> (Term s PByteString -> POr PByteString s)
-> Term s PByteString
-> Term s (POr PByteString)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term s PByteString -> POr PByteString s
forall (a :: PType) (s :: S). Term s a -> POr a s
POr (Term s PByteString -> Term s (POr PByteString))
-> Term s PByteString -> Term s (POr PByteString)
forall a b. (a -> b) -> a -> b
$ Term s PByteString
forall a. Monoid a => a
mempty
newtype PXor (a :: S -> Type) (s :: S)
= PXor (Term s a)
deriving stock
(
(forall x. PXor a s -> Rep (PXor a s) x)
-> (forall x. Rep (PXor a s) x -> PXor a s) -> Generic (PXor a s)
forall x. Rep (PXor a s) x -> PXor a s
forall x. PXor a s -> Rep (PXor a s) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall (a :: PType) (s :: S) x. Rep (PXor a s) x -> PXor a s
forall (a :: PType) (s :: S) x. PXor a s -> Rep (PXor a s) x
$cfrom :: forall (a :: PType) (s :: S) x. PXor a s -> Rep (PXor a s) x
from :: forall x. PXor a s -> Rep (PXor a s) x
$cto :: forall (a :: PType) (s :: S) x. Rep (PXor a s) x -> PXor a s
to :: forall x. Rep (PXor a s) x -> PXor a s
Generic
)
deriving anyclass
(
All @[Type] (SListI @Type) (Code (PXor a s))
All @[Type] (SListI @Type) (Code (PXor a s)) =>
(PXor a s -> Rep (PXor a s))
-> (Rep (PXor a s) -> PXor a s) -> Generic (PXor a s)
Rep (PXor a s) -> PXor a s
PXor a s -> Rep (PXor a s)
forall a.
All @[Type] (SListI @Type) (Code a) =>
(a -> Rep a) -> (Rep a -> a) -> Generic a
forall (a :: PType) (s :: S).
All @[Type] (SListI @Type) (Code (PXor a s))
forall (a :: PType) (s :: S). Rep (PXor a s) -> PXor a s
forall (a :: PType) (s :: S). PXor a s -> Rep (PXor a s)
$cfrom :: forall (a :: PType) (s :: S). PXor a s -> Rep (PXor a s)
from :: PXor a s -> Rep (PXor a s)
$cto :: forall (a :: PType) (s :: S). Rep (PXor a s) -> PXor a s
to :: Rep (PXor a s) -> PXor a s
SOP.Generic
,
(forall (s :: S).
Term s (PXor a) -> Term s (PXor a) -> Term s PBool)
-> PEq (PXor a)
forall (s :: S). Term s (PXor a) -> Term s (PXor a) -> Term s PBool
forall (a :: PType) (s :: S).
PEq a =>
Term s (PXor a) -> Term s (PXor a) -> Term s PBool
forall (t :: PType).
(forall (s :: S). Term s t -> Term s t -> Term s PBool) -> PEq t
$c#== :: forall (a :: PType) (s :: S).
PEq a =>
Term s (PXor a) -> Term s (PXor a) -> Term s PBool
#== :: forall (s :: S). Term s (PXor a) -> Term s (PXor a) -> Term s PBool
PEq
,
PEq (PXor a)
PEq (PXor a) =>
(forall (s :: S).
Term s (PXor a) -> Term s (PXor a) -> Term s PBool)
-> (forall (s :: S).
Term s (PXor a) -> Term s (PXor a) -> Term s PBool)
-> (forall (s :: S).
Term s (PXor a) -> Term s (PXor a) -> Term s (PXor a))
-> (forall (s :: S).
Term s (PXor a) -> Term s (PXor a) -> Term s (PXor a))
-> POrd (PXor a)
forall (s :: S). Term s (PXor a) -> Term s (PXor a) -> Term s PBool
forall (s :: S).
Term s (PXor a) -> Term s (PXor a) -> Term s (PXor a)
forall (t :: PType).
PEq t =>
(forall (s :: S). Term s t -> Term s t -> Term s PBool)
-> (forall (s :: S). Term s t -> Term s t -> Term s PBool)
-> (forall (s :: S). Term s t -> Term s t -> Term s t)
-> (forall (s :: S). Term s t -> Term s t -> Term s t)
-> POrd t
forall (a :: PType). POrd a => PEq (PXor a)
forall (a :: PType) (s :: S).
POrd a =>
Term s (PXor a) -> Term s (PXor a) -> Term s PBool
forall (a :: PType) (s :: S).
POrd a =>
Term s (PXor a) -> Term s (PXor a) -> Term s (PXor a)
$c#<= :: forall (a :: PType) (s :: S).
POrd a =>
Term s (PXor a) -> Term s (PXor a) -> Term s PBool
#<= :: forall (s :: S). Term s (PXor a) -> Term s (PXor a) -> Term s PBool
$c#< :: forall (a :: PType) (s :: S).
POrd a =>
Term s (PXor a) -> Term s (PXor a) -> Term s PBool
#< :: forall (s :: S). Term s (PXor a) -> Term s (PXor a) -> Term s PBool
$cpmax :: forall (a :: PType) (s :: S).
POrd a =>
Term s (PXor a) -> Term s (PXor a) -> Term s (PXor a)
pmax :: forall (s :: S).
Term s (PXor a) -> Term s (PXor a) -> Term s (PXor a)
$cpmin :: forall (a :: PType) (s :: S).
POrd a =>
Term s (PXor a) -> Term s (PXor a) -> Term s (PXor a)
pmin :: forall (s :: S).
Term s (PXor a) -> Term s (PXor a) -> Term s (PXor a)
POrd
)
deriving
(
(forall (s :: S). PXor a s -> Term s (PInner (PXor a)))
-> (forall (s :: S) (b :: PType).
Term s (PInner (PXor a)) -> (PXor a s -> Term s b) -> Term s b)
-> PlutusType (PXor a)
forall (s :: S). PXor a s -> Term s (PInner (PXor a))
forall (s :: S) (b :: PType).
Term s (PInner (PXor a)) -> (PXor a s -> Term s b) -> Term s b
forall (a :: PType).
(forall (s :: S). a s -> Term s (PInner a))
-> (forall (s :: S) (b :: PType).
Term s (PInner a) -> (a s -> Term s b) -> Term s b)
-> PlutusType a
forall (a :: PType) (s :: S). PXor a s -> Term s (PInner (PXor a))
forall (a :: PType) (s :: S) (b :: PType).
Term s (PInner (PXor a)) -> (PXor a s -> Term s b) -> Term s b
$cpcon' :: forall (a :: PType) (s :: S). PXor a s -> Term s (PInner (PXor a))
pcon' :: forall (s :: S). PXor a s -> Term s (PInner (PXor a))
$cpmatch' :: forall (a :: PType) (s :: S) (b :: PType).
Term s (PInner (PXor a)) -> (PXor a s -> Term s b) -> Term s b
pmatch' :: forall (s :: S) (b :: PType).
Term s (PInner (PXor a)) -> (PXor a s -> Term s b) -> Term s b
PlutusType
)
via (DeriveNewtypePlutusType (PXor a))
deriving via
DeriveNewtypePLiftable (PXor a) (AsHaskell a)
instance
(PLiftable a, PLC.DefaultUni `Includes` PlutusRepr a) => PLiftable (PXor a)
instance PSemigroup (PXor PBool) where
{-# INLINEABLE (#<>) #-}
Term s (PXor PBool)
x #<> :: forall (s :: S).
Term s (PXor PBool) -> Term s (PXor PBool) -> Term s (PXor PBool)
#<> Term s (PXor PBool)
y = Term s (PBool :--> (PXor PBool :--> (PXor PBool :--> PXor PBool)))
forall (a :: PType) (s :: S).
Term s (PBool :--> (a :--> (a :--> a)))
pif' Term s (PBool :--> (PXor PBool :--> (PXor PBool :--> PXor PBool)))
-> Term s PBool
-> Term s (PXor PBool :--> (PXor PBool :--> PXor PBool))
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (PXor PBool) -> Term s (PInner (PXor PBool))
forall (s :: S) (a :: PType). Term s a -> Term s (PInner a)
pto Term s (PXor PBool)
x Term s (PXor PBool :--> (PXor PBool :--> PXor PBool))
-> Term s (PXor PBool) -> Term s (PXor PBool :--> PXor PBool)
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# (PXor PBool s -> Term s (PXor PBool)
forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon (PXor PBool s -> Term s (PXor PBool))
-> (Term s PBool -> PXor PBool s)
-> Term s PBool
-> Term s (PXor PBool)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term s PBool -> PXor PBool s
forall (a :: PType) (s :: S). Term s a -> PXor a s
PXor (Term s PBool -> Term s (PXor PBool))
-> Term s PBool -> Term s (PXor PBool)
forall a b. (a -> b) -> a -> b
$ Term s (PBool :--> PBool)
forall (s :: S). Term s (PBool :--> PBool)
pnot Term s (PBool :--> PBool) -> Term s PBool -> Term s PBool
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (PXor PBool) -> Term s (PInner (PXor PBool))
forall (s :: S) (a :: PType). Term s a -> Term s (PInner a)
pto Term s (PXor PBool)
y) Term s (PXor PBool :--> PXor PBool)
-> Term s (PXor PBool) -> Term s (PXor PBool)
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (PXor PBool)
y
{-# INLINEABLE pstimes #-}
pstimes :: forall (s :: S).
Term s PPositive -> Term s (PXor PBool) -> Term s (PXor PBool)
pstimes = Term s PBool
-> Term s PPositive -> Term s (PXor PBool) -> Term s (PXor PBool)
forall (a :: PType) (b :: PType) (s :: S).
((PInner a :: PType) ~ (PInteger :: PType)) =>
Term s b -> Term s a -> Term s (PXor b) -> Term s (PXor b)
pxortimes (PBool s -> Term s PBool
forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon PBool s
forall (s :: S). PBool s
PFalse)
instance PMonoid (PXor PBool) where
{-# INLINEABLE pmempty #-}
pmempty :: forall (s :: S). Term s (PXor PBool)
pmempty = PXor PBool s -> Term s (PXor PBool)
forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon (PXor PBool s -> Term s (PXor PBool))
-> (PBool s -> PXor PBool s) -> PBool s -> Term s (PXor PBool)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term s PBool -> PXor PBool s
forall (a :: PType) (s :: S). Term s a -> PXor a s
PXor (Term s PBool -> PXor PBool s)
-> (PBool s -> Term s PBool) -> PBool s -> PXor PBool s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. PBool s -> Term s PBool
forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon (PBool s -> Term s (PXor PBool)) -> PBool s -> Term s (PXor PBool)
forall a b. (a -> b) -> a -> b
$ PBool s
forall (s :: S). PBool s
PFalse
{-# INLINEABLE pmtimes #-}
pmtimes :: forall (s :: S).
Term s PNatural -> Term s (PXor PBool) -> Term s (PXor PBool)
pmtimes = Term s PBool
-> Term s PNatural -> Term s (PXor PBool) -> Term s (PXor PBool)
forall (a :: PType) (b :: PType) (s :: S).
((PInner a :: PType) ~ (PInteger :: PType)) =>
Term s b -> Term s a -> Term s (PXor b) -> Term s (PXor b)
pxortimes (PBool s -> Term s PBool
forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon PBool s
forall (s :: S). PBool s
PFalse)
instance PSemigroup (PXor PByteString) where
{-# INLINEABLE (#<>) #-}
Term s (PXor PByteString)
x #<> :: forall (s :: S).
Term s (PXor PByteString)
-> Term s (PXor PByteString) -> Term s (PXor PByteString)
#<> Term s (PXor PByteString)
y = Term s (PInner (PXor PByteString)) -> Term s (PXor PByteString)
forall (s :: S) (a :: PType). Term s (PInner a) -> Term s a
punsafeDowncast (Term s (PInner (PXor PByteString)) -> Term s (PXor PByteString))
-> Term s (PInner (PXor PByteString)) -> Term s (PXor PByteString)
forall a b. (a -> b) -> a -> b
$ Term
s
(PLogicOpSemantics
:--> (PByteString :--> (PByteString :--> PByteString)))
forall (s :: S).
Term
s
(PLogicOpSemantics
:--> (PByteString :--> (PByteString :--> PByteString)))
pxorBS Term
s
(PLogicOpSemantics
:--> (PByteString :--> (PByteString :--> PByteString)))
-> Term s PLogicOpSemantics
-> Term s (PByteString :--> (PByteString :--> PByteString))
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s PLogicOpSemantics
forall (s :: S). Term s PLogicOpSemantics
ppadding Term s (PByteString :--> (PByteString :--> PByteString))
-> Term s PByteString -> Term s (PByteString :--> PByteString)
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (PXor PByteString) -> Term s (PInner (PXor PByteString))
forall (s :: S) (a :: PType). Term s a -> Term s (PInner a)
pto Term s (PXor PByteString)
x Term s (PByteString :--> PByteString)
-> Term s PByteString -> Term s PByteString
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (PXor PByteString) -> Term s (PInner (PXor PByteString))
forall (s :: S) (a :: PType). Term s a -> Term s (PInner a)
pto Term s (PXor PByteString)
y
{-# INLINEABLE pstimes #-}
pstimes :: forall (s :: S).
Term s PPositive
-> Term s (PXor PByteString) -> Term s (PXor PByteString)
pstimes = Term s PByteString
-> Term s PPositive
-> Term s (PXor PByteString)
-> Term s (PXor PByteString)
forall (a :: PType) (b :: PType) (s :: S).
((PInner a :: PType) ~ (PInteger :: PType)) =>
Term s b -> Term s a -> Term s (PXor b) -> Term s (PXor b)
pxortimes Term s PByteString
forall a. Monoid a => a
mempty
instance PMonoid (PXor PByteString) where
{-# INLINEABLE pmempty #-}
pmempty :: forall (s :: S). Term s (PXor PByteString)
pmempty = PXor PByteString s -> Term s (PXor PByteString)
forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon (PXor PByteString s -> Term s (PXor PByteString))
-> (Term s PByteString -> PXor PByteString s)
-> Term s PByteString
-> Term s (PXor PByteString)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term s PByteString -> PXor PByteString s
forall (a :: PType) (s :: S). Term s a -> PXor a s
PXor (Term s PByteString -> Term s (PXor PByteString))
-> Term s PByteString -> Term s (PXor PByteString)
forall a b. (a -> b) -> a -> b
$ Term s PByteString
forall a. Monoid a => a
mempty
pxortimes ::
forall (a :: S -> Type) (b :: S -> Type) (s :: S).
PInner a ~ PInteger =>
Term s b ->
Term s a ->
Term s (PXor b) ->
Term s (PXor b)
pxortimes :: forall (a :: PType) (b :: PType) (s :: S).
((PInner a :: PType) ~ (PInteger :: PType)) =>
Term s b -> Term s a -> Term s (PXor b) -> Term s (PXor b)
pxortimes Term s b
def Term s a
x =
Term s PBool
-> Term s (PXor b) -> Term s (PXor b) -> Term s (PXor b)
forall (a :: PType) (s :: S).
Term s PBool -> Term s a -> Term s a -> Term s a
pif
((Term s (PInteger :--> (PInteger :--> PInteger))
forall (s :: S). Term s (PInteger :--> (PInteger :--> PInteger))
pdiv Term s (PInteger :--> (PInteger :--> PInteger))
-> Term s PInteger -> Term s (PInteger :--> PInteger)
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s a -> Term s (PInner a)
forall (s :: S) (a :: PType). Term s a -> Term s (PInner a)
pto Term s a
x Term s (PInteger :--> PInteger)
-> Term s PInteger -> Term s PInteger
forall (s :: S) (a :: PType) (b :: PType).
Term s (a :--> b) -> Term s a -> Term s b
# Term s PInteger
2) Term s PInteger -> Term s PInteger -> Term s PBool
forall (s :: S). Term s PInteger -> Term s PInteger -> Term s PBool
forall (t :: PType) (s :: S).
PEq t =>
Term s t -> Term s t -> Term s PBool
#== Term s PInteger
0)
(PXor b s -> Term s (PXor b)
forall (a :: PType) (s :: S). PlutusType a => a s -> Term s a
pcon (PXor b s -> Term s (PXor b))
-> (Term s b -> PXor b s) -> Term s b -> Term s (PXor b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term s b -> PXor b s
forall (a :: PType) (s :: S). Term s a -> PXor a s
PXor (Term s b -> Term s (PXor b)) -> Term s b -> Term s (PXor b)
forall a b. (a -> b) -> a -> b
$ Term s b
def)