{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE UndecidableInstances #-}
module Plutarch.List (
PList (PSCons, PSNil),
ptryUncons,
puncons,
pzip,
pfind,
preverse,
pcheckSorted,
pelem,
(#!!),
pelemAt,
pelemAt',
plistEquals,
pmatchListN,
pmatchList,
pmatchListUnsafe,
) where
import Data.Bifunctor (bimap)
import Data.Kind (Type)
import Data.Proxy (Proxy (Proxy))
import GHC.Generics (Generic)
import GHC.TypeLits (KnownNat, natVal, type (+), type (-))
import Generics.SOP (NP (..))
import Generics.SOP qualified as SOP
import Plutarch.Builtin.Bool (PBool (PFalse, PTrue), pif, ptrue, (#&&))
import Plutarch.Builtin.Integer (PInteger)
import Plutarch.Internal.Eq (PEq ((#==)))
import Plutarch.Internal.Fix (pfix)
import Plutarch.Internal.Lift (pconstant)
import Plutarch.Internal.ListLike (
PElemConstraint,
PIsListLike,
PListLike,
pcons,
pelimList,
pfoldl,
phead,
pnil,
precList,
ptail,
pzipWith',
)
import Plutarch.Internal.Ord (POrd ((#<), (#<=)))
import Plutarch.Internal.PLam (plam)
import Plutarch.Internal.PlutusType (
PlutusType,
pcon,
pmatch,
)
import Plutarch.Internal.Show (PShow (pshow'), pshowList)
import Plutarch.Internal.Term (
InternalConfig (..),
S,
Term,
perror,
pgetInternalConfig,
phoistAcyclic,
plet,
pplaceholder,
punsafeCoerce,
pwithInternalConfig,
(#),
(#$),
(:-->),
)
import Plutarch.Internal.TermCont (pfindAllPlaceholders, unTermCont)
import Plutarch.Internal.Trace (ptraceInfo)
import Plutarch.Maybe (PMaybe (PJust, PNothing))
import Plutarch.Pair (PPair (PPair))
import Plutarch.Repr.SOP (DeriveAsSOPStruct (DeriveAsSOPStruct))
data PList (a :: S -> Type) (s :: S)
= PSCons (Term s a) (Term s (PList a))
| PSNil
deriving stock
(
(forall x. PList a s -> Rep (PList a s) x)
-> (forall x. Rep (PList a s) x -> PList a s)
-> Generic (PList a s)
forall x. Rep (PList a s) x -> PList a s
forall x. PList a s -> Rep (PList a s) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall (a :: S -> Type) (s :: S) x. Rep (PList a s) x -> PList a s
forall (a :: S -> Type) (s :: S) x. PList a s -> Rep (PList a s) x
$cfrom :: forall (a :: S -> Type) (s :: S) x. PList a s -> Rep (PList a s) x
from :: forall x. PList a s -> Rep (PList a s) x
$cto :: forall (a :: S -> Type) (s :: S) x. Rep (PList a s) x -> PList a s
to :: forall x. Rep (PList a s) x -> PList a s
Generic
)
deriving anyclass
(
All @[Type] (SListI @Type) (Code (PList a s))
All @[Type] (SListI @Type) (Code (PList a s)) =>
(PList a s -> Rep (PList a s))
-> (Rep (PList a s) -> PList a s) -> Generic (PList a s)
Rep (PList a s) -> PList a s
PList a s -> Rep (PList a s)
forall a.
All @[Type] (SListI @Type) (Code a) =>
(a -> Rep a) -> (Rep a -> a) -> Generic a
forall (a :: S -> Type) (s :: S).
All @[Type] (SListI @Type) (Code (PList a s))
forall (a :: S -> Type) (s :: S). Rep (PList a s) -> PList a s
forall (a :: S -> Type) (s :: S). PList a s -> Rep (PList a s)
$cfrom :: forall (a :: S -> Type) (s :: S). PList a s -> Rep (PList a s)
from :: PList a s -> Rep (PList a s)
$cto :: forall (a :: S -> Type) (s :: S). Rep (PList a s) -> PList a s
to :: Rep (PList a s) -> PList a s
SOP.Generic
)
deriving via
DeriveAsSOPStruct (PList a)
instance
PlutusType (PList a)
instance PShow a => PShow (PList a) where
pshow' :: forall (s :: S). Bool -> Term s (PList a) -> Term s PString
pshow' Bool
_ Term s (PList a)
x = forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(s :: S).
(PShow a, PIsListLike list a) =>
Term s (list a :--> PString)
pshowList @PList @a Term s (PList a :--> PString) -> Term s (PList a) -> Term s PString
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (PList a)
x
instance PEq a => PEq (PList a) where
#== :: forall (s :: S).
Term s (PList a) -> Term s (PList a) -> Term s PBool
(#==) Term s (PList a)
xs Term s (PList a)
ys = Term s (PList a :--> (PList a :--> PBool))
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(s :: S).
(PIsListLike list a, PEq a) =>
Term s (list a :--> (list a :--> PBool))
plistEquals Term s (PList a :--> (PList a :--> PBool))
-> Term s (PList a) -> Term s (PList a :--> PBool)
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (PList a)
xs Term s (PList a :--> PBool) -> Term s (PList a) -> Term s PBool
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (PList a)
ys
instance PListLike PList where
type PElemConstraint PList _ = ()
pelimList :: forall (a :: S -> Type) (s :: S) (r :: S -> Type).
PElemConstraint PList a =>
(Term s a -> Term s (PList a) -> Term s r)
-> Term s r -> Term s (PList a) -> Term s r
pelimList Term s a -> Term s (PList a) -> Term s r
match_cons Term s r
match_nil Term s (PList a)
ls = Term s (PList a) -> (PList a s -> Term s r) -> Term s r
forall (a :: S -> Type) (s :: S) (b :: S -> Type).
PlutusType a =>
Term s a -> (a s -> Term s b) -> Term s b
pmatch Term s (PList a)
ls ((PList a s -> Term s r) -> Term s r)
-> (PList a s -> Term s r) -> Term s r
forall a b. (a -> b) -> a -> b
$ \case
PSCons Term s a
x Term s (PList a)
xs -> Term s a -> Term s (PList a) -> Term s r
match_cons Term s a
x Term s (PList a)
xs
PList a s
PSNil -> Term s r
match_nil
pcons :: forall (a :: S -> Type) (s :: S).
PElemConstraint PList a =>
Term s (a :--> (PList a :--> PList a))
pcons = ClosedTerm (a :--> (PList a :--> PList a))
-> Term s (a :--> (PList a :--> PList a))
forall (a :: S -> Type) (s :: S).
HasCallStack =>
ClosedTerm a -> Term s a
phoistAcyclic (ClosedTerm (a :--> (PList a :--> PList a))
-> Term s (a :--> (PList a :--> PList a)))
-> ClosedTerm (a :--> (PList a :--> PList a))
-> Term s (a :--> (PList a :--> PList a))
forall a b. (a -> b) -> a -> b
$ (Term s a -> Term s (PList a) -> Term s (PList a))
-> Term s (a :--> (PList a :--> PList a))
forall a (b :: S -> Type) (s :: S) (c :: S -> Type).
(PLamN a b s, HasCallStack) =>
(Term s c -> a) -> Term s (c :--> b)
forall (c :: S -> Type).
HasCallStack =>
(Term s c -> Term s (PList a) -> Term s (PList a))
-> Term s (c :--> (PList a :--> PList a))
plam ((Term s a -> Term s (PList a) -> Term s (PList a))
-> Term s (a :--> (PList a :--> PList a)))
-> (Term s a -> Term s (PList a) -> Term s (PList a))
-> Term s (a :--> (PList a :--> PList a))
forall a b. (a -> b) -> a -> b
$ \Term s a
x Term s (PList a)
xs -> PList a s -> Term s (PList a)
forall (a :: S -> Type) (s :: S). PlutusType a => a s -> Term s a
pcon (Term s a -> Term s (PList a) -> PList a s
forall (a :: S -> Type) (s :: S).
Term s a -> Term s (PList a) -> PList a s
PSCons Term s a
x Term s (PList a)
xs)
pnil :: forall (a :: S -> Type) (s :: S).
PElemConstraint PList a =>
Term s (PList a)
pnil = PList a s -> Term s (PList a)
forall (a :: S -> Type) (s :: S). PlutusType a => a s -> Term s a
pcon PList a s
forall (a :: S -> Type) (s :: S). PList a s
PSNil
ptryUncons ::
PIsListLike list a =>
Term s (list a :--> PPair a (list a))
ptryUncons :: forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(s :: S).
PIsListLike list a =>
Term s (list a :--> PPair a (list a))
ptryUncons =
ClosedTerm (list a :--> PPair a (list a))
-> Term s (list a :--> PPair a (list a))
forall (a :: S -> Type) (s :: S).
HasCallStack =>
ClosedTerm a -> Term s a
phoistAcyclic (ClosedTerm (list a :--> PPair a (list a))
-> Term s (list a :--> PPair a (list a)))
-> ClosedTerm (list a :--> PPair a (list a))
-> Term s (list a :--> PPair a (list a))
forall a b. (a -> b) -> a -> b
$
(Term s (list a) -> Term s (PPair a (list a)))
-> Term s (list a :--> PPair a (list a))
forall a (b :: S -> Type) (s :: S) (c :: S -> Type).
(PLamN a b s, HasCallStack) =>
(Term s c -> a) -> Term s (c :--> b)
forall (c :: S -> Type).
HasCallStack =>
(Term s c -> Term s (PPair a (list a)))
-> Term s (c :--> PPair a (list a))
plam ((Term s (list a) -> Term s (PPair a (list a)))
-> Term s (list a :--> PPair a (list a)))
-> (Term s (list a) -> Term s (PPair a (list a)))
-> Term s (list a :--> PPair a (list a))
forall a b. (a -> b) -> a -> b
$
(Term s a -> Term s (list a) -> Term s (PPair a (list a)))
-> Term s (PPair a (list a))
-> Term s (list a)
-> Term s (PPair a (list a))
forall (a :: S -> Type) (s :: S) (r :: S -> Type).
PElemConstraint list a =>
(Term s a -> Term s (list a) -> Term s r)
-> Term s r -> Term s (list a) -> Term s r
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S)
(r :: S -> Type).
(PListLike list, PElemConstraint list a) =>
(Term s a -> Term s (list a) -> Term s r)
-> Term s r -> Term s (list a) -> Term s r
pelimList (\Term s a
x -> PPair a (list a) s -> Term s (PPair a (list a))
forall (a :: S -> Type) (s :: S). PlutusType a => a s -> Term s a
pcon (PPair a (list a) s -> Term s (PPair a (list a)))
-> (Term s (list a) -> PPair a (list a) s)
-> Term s (list a)
-> Term s (PPair a (list a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term s a -> Term s (list a) -> PPair a (list a) s
forall (a :: S -> Type) (b :: S -> Type) (s :: S).
Term s a -> Term s b -> PPair a b s
PPair Term s a
x) Term s (PPair a (list a))
forall (s :: S) (a :: S -> Type). Term s a
perror
puncons ::
PIsListLike list a =>
Term s (list a :--> PMaybe (PPair a (list a)))
puncons :: forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(s :: S).
PIsListLike list a =>
Term s (list a :--> PMaybe (PPair a (list a)))
puncons =
ClosedTerm (list a :--> PMaybe (PPair a (list a)))
-> Term s (list a :--> PMaybe (PPair a (list a)))
forall (a :: S -> Type) (s :: S).
HasCallStack =>
ClosedTerm a -> Term s a
phoistAcyclic (ClosedTerm (list a :--> PMaybe (PPair a (list a)))
-> Term s (list a :--> PMaybe (PPair a (list a))))
-> ClosedTerm (list a :--> PMaybe (PPair a (list a)))
-> Term s (list a :--> PMaybe (PPair a (list a)))
forall a b. (a -> b) -> a -> b
$
(Term s (list a) -> Term s (PMaybe (PPair a (list a))))
-> Term s (list a :--> PMaybe (PPair a (list a)))
forall a (b :: S -> Type) (s :: S) (c :: S -> Type).
(PLamN a b s, HasCallStack) =>
(Term s c -> a) -> Term s (c :--> b)
forall (c :: S -> Type).
HasCallStack =>
(Term s c -> Term s (PMaybe (PPair a (list a))))
-> Term s (c :--> PMaybe (PPair a (list a)))
plam ((Term s (list a) -> Term s (PMaybe (PPair a (list a))))
-> Term s (list a :--> PMaybe (PPair a (list a))))
-> (Term s (list a) -> Term s (PMaybe (PPair a (list a))))
-> Term s (list a :--> PMaybe (PPair a (list a)))
forall a b. (a -> b) -> a -> b
$
(Term s a -> Term s (list a) -> Term s (PMaybe (PPair a (list a))))
-> Term s (PMaybe (PPair a (list a)))
-> Term s (list a)
-> Term s (PMaybe (PPair a (list a)))
forall (a :: S -> Type) (s :: S) (r :: S -> Type).
PElemConstraint list a =>
(Term s a -> Term s (list a) -> Term s r)
-> Term s r -> Term s (list a) -> Term s r
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S)
(r :: S -> Type).
(PListLike list, PElemConstraint list a) =>
(Term s a -> Term s (list a) -> Term s r)
-> Term s r -> Term s (list a) -> Term s r
pelimList (\Term s a
x -> PMaybe (PPair a (list a)) s -> Term s (PMaybe (PPair a (list a)))
forall (a :: S -> Type) (s :: S). PlutusType a => a s -> Term s a
pcon (PMaybe (PPair a (list a)) s -> Term s (PMaybe (PPair a (list a))))
-> (Term s (list a) -> PMaybe (PPair a (list a)) s)
-> Term s (list a)
-> Term s (PMaybe (PPair a (list a)))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term s (PPair a (list a)) -> PMaybe (PPair a (list a)) s
forall (a :: S -> Type) (s :: S). Term s a -> PMaybe a s
PJust (Term s (PPair a (list a)) -> PMaybe (PPair a (list a)) s)
-> (Term s (list a) -> Term s (PPair a (list a)))
-> Term s (list a)
-> PMaybe (PPair a (list a)) s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. PPair a (list a) s -> Term s (PPair a (list a))
forall (a :: S -> Type) (s :: S). PlutusType a => a s -> Term s a
pcon (PPair a (list a) s -> Term s (PPair a (list a)))
-> (Term s (list a) -> PPair a (list a) s)
-> Term s (list a)
-> Term s (PPair a (list a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term s a -> Term s (list a) -> PPair a (list a) s
forall (a :: S -> Type) (b :: S -> Type) (s :: S).
Term s a -> Term s b -> PPair a b s
PPair Term s a
x) (PMaybe (PPair a (list a)) s -> Term s (PMaybe (PPair a (list a)))
forall (a :: S -> Type) (s :: S). PlutusType a => a s -> Term s a
pcon PMaybe (PPair a (list a)) s
forall (a :: S -> Type) (s :: S). PMaybe a s
PNothing)
pzip ::
( PListLike list
, PElemConstraint list a
, PElemConstraint list b
, PElemConstraint list (PPair a b)
) =>
Term s (list a :--> list b :--> list (PPair a b))
pzip :: forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(b :: S -> Type) (s :: S).
(PListLike list, PElemConstraint list a, PElemConstraint list b,
PElemConstraint list (PPair a b)) =>
Term s (list a :--> (list b :--> list (PPair a b)))
pzip = ClosedTerm (list a :--> (list b :--> list (PPair a b)))
-> Term s (list a :--> (list b :--> list (PPair a b)))
forall (a :: S -> Type) (s :: S).
HasCallStack =>
ClosedTerm a -> Term s a
phoistAcyclic (ClosedTerm (list a :--> (list b :--> list (PPair a b)))
-> Term s (list a :--> (list b :--> list (PPair a b))))
-> ClosedTerm (list a :--> (list b :--> list (PPair a b)))
-> Term s (list a :--> (list b :--> list (PPair a b)))
forall a b. (a -> b) -> a -> b
$ (Term s a -> Term s b -> Term s (PPair a b))
-> Term s (list a :--> (list b :--> list (PPair a b)))
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(b :: S -> Type) (c :: S -> Type) (s :: S).
(PListLike list, PElemConstraint list a, PElemConstraint list b,
PElemConstraint list c) =>
(Term s a -> Term s b -> Term s c)
-> Term s (list a :--> (list b :--> list c))
pzipWith' ((Term s a -> Term s b -> Term s (PPair a b))
-> Term s (list a :--> (list b :--> list (PPair a b))))
-> (Term s a -> Term s b -> Term s (PPair a b))
-> Term s (list a :--> (list b :--> list (PPair a b)))
forall a b. (a -> b) -> a -> b
$ \Term s a
x Term s b
y -> PPair a b s -> Term s (PPair a b)
forall (a :: S -> Type) (s :: S). PlutusType a => a s -> Term s a
pcon (Term s a -> Term s b -> PPair a b s
forall (a :: S -> Type) (b :: S -> Type) (s :: S).
Term s a -> Term s b -> PPair a b s
PPair Term s a
x Term s b
y)
pfind :: PIsListLike l a => Term s ((a :--> PBool) :--> l a :--> PMaybe a)
pfind :: forall (l :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S).
PIsListLike l a =>
Term s ((a :--> PBool) :--> (l a :--> PMaybe a))
pfind = ClosedTerm ((a :--> PBool) :--> (l a :--> PMaybe a))
-> Term s ((a :--> PBool) :--> (l a :--> PMaybe a))
forall (a :: S -> Type) (s :: S).
HasCallStack =>
ClosedTerm a -> Term s a
phoistAcyclic (ClosedTerm ((a :--> PBool) :--> (l a :--> PMaybe a))
-> Term s ((a :--> PBool) :--> (l a :--> PMaybe a)))
-> ClosedTerm ((a :--> PBool) :--> (l a :--> PMaybe a))
-> Term s ((a :--> PBool) :--> (l a :--> PMaybe a))
forall a b. (a -> b) -> a -> b
$
Term
s
((((a :--> PBool) :--> (l a :--> PMaybe a))
:--> ((a :--> PBool) :--> (l a :--> PMaybe a)))
:--> ((a :--> PBool) :--> (l a :--> PMaybe a)))
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (((a :--> b) :--> (a :--> b)) :--> (a :--> b))
pfix Term
s
((((a :--> PBool) :--> (l a :--> PMaybe a))
:--> ((a :--> PBool) :--> (l a :--> PMaybe a)))
:--> ((a :--> PBool) :--> (l a :--> PMaybe a)))
-> Term
s
(((a :--> PBool) :--> (l a :--> PMaybe a))
:--> ((a :--> PBool) :--> (l a :--> PMaybe a)))
-> Term s ((a :--> PBool) :--> (l a :--> PMaybe a))
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
#$ (Term s ((a :--> PBool) :--> (l a :--> PMaybe a))
-> Term s (a :--> PBool) -> Term s (l a) -> Term s (PMaybe a))
-> Term
s
(((a :--> PBool) :--> (l a :--> PMaybe a))
:--> ((a :--> PBool) :--> (l a :--> PMaybe a)))
forall a (b :: S -> Type) (s :: S) (c :: S -> Type).
(PLamN a b s, HasCallStack) =>
(Term s c -> a) -> Term s (c :--> b)
forall (c :: S -> Type).
HasCallStack =>
(Term s c
-> Term s (a :--> PBool) -> Term s (l a) -> Term s (PMaybe a))
-> Term s (c :--> ((a :--> PBool) :--> (l a :--> PMaybe a)))
plam ((Term s ((a :--> PBool) :--> (l a :--> PMaybe a))
-> Term s (a :--> PBool) -> Term s (l a) -> Term s (PMaybe a))
-> Term
s
(((a :--> PBool) :--> (l a :--> PMaybe a))
:--> ((a :--> PBool) :--> (l a :--> PMaybe a))))
-> (Term s ((a :--> PBool) :--> (l a :--> PMaybe a))
-> Term s (a :--> PBool) -> Term s (l a) -> Term s (PMaybe a))
-> Term
s
(((a :--> PBool) :--> (l a :--> PMaybe a))
:--> ((a :--> PBool) :--> (l a :--> PMaybe a)))
forall a b. (a -> b) -> a -> b
$ \Term s ((a :--> PBool) :--> (l a :--> PMaybe a))
self Term s (a :--> PBool)
f Term s (l a)
xs ->
(Term s a -> Term s (l a) -> Term s (PMaybe a))
-> Term s (PMaybe a) -> Term s (l a) -> Term s (PMaybe a)
forall (a :: S -> Type) (s :: S) (r :: S -> Type).
PElemConstraint l a =>
(Term s a -> Term s (l a) -> Term s r)
-> Term s r -> Term s (l a) -> Term s r
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S)
(r :: S -> Type).
(PListLike list, PElemConstraint list a) =>
(Term s a -> Term s (list a) -> Term s r)
-> Term s r -> Term s (list a) -> Term s r
pelimList
( \Term s a
y Term s (l a)
ys ->
Term s PBool
-> Term s (PMaybe a) -> Term s (PMaybe a) -> Term s (PMaybe a)
forall (a :: S -> Type) (s :: S).
Term s PBool -> Term s a -> Term s a -> Term s a
pif
(Term s (a :--> PBool)
f Term s (a :--> PBool) -> Term s a -> Term s PBool
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s a
y)
(PMaybe a s -> Term s (PMaybe a)
forall (a :: S -> Type) (s :: S). PlutusType a => a s -> Term s a
pcon (PMaybe a s -> Term s (PMaybe a))
-> PMaybe a s -> Term s (PMaybe a)
forall a b. (a -> b) -> a -> b
$ Term s a -> PMaybe a s
forall (a :: S -> Type) (s :: S). Term s a -> PMaybe a s
PJust Term s a
y)
(Term s ((a :--> PBool) :--> (l a :--> PMaybe a))
self Term s ((a :--> PBool) :--> (l a :--> PMaybe a))
-> Term s (a :--> PBool) -> Term s (l a :--> PMaybe a)
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (a :--> PBool)
f Term s (l a :--> PMaybe a) -> Term s (l a) -> Term s (PMaybe a)
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (l a)
ys)
)
(PMaybe a s -> Term s (PMaybe a)
forall (a :: S -> Type) (s :: S). PlutusType a => a s -> Term s a
pcon PMaybe a s
forall (a :: S -> Type) (s :: S). PMaybe a s
PNothing)
Term s (l a)
xs
preverse ::
forall (l :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S).
PIsListLike l a =>
Term s (l a :--> l a)
preverse :: forall (l :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S).
PIsListLike l a =>
Term s (l a :--> l a)
preverse = ClosedTerm (l a :--> l a) -> Term s (l a :--> l a)
forall (a :: S -> Type) (s :: S).
HasCallStack =>
ClosedTerm a -> Term s a
phoistAcyclic (ClosedTerm (l a :--> l a) -> Term s (l a :--> l a))
-> ClosedTerm (l a :--> l a) -> Term s (l a :--> l a)
forall a b. (a -> b) -> a -> b
$ Term s ((l a :--> (a :--> l a)) :--> (l a :--> (l a :--> l a)))
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S)
(b :: S -> Type).
PIsListLike list a =>
Term s ((b :--> (a :--> b)) :--> (b :--> (list a :--> b)))
pfoldl Term s ((l a :--> (a :--> l a)) :--> (l a :--> (l a :--> l a)))
-> Term s (l a :--> (a :--> l a))
-> Term s (l a :--> (l a :--> l a))
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# (Term s (l a) -> Term s a -> Term s (l a))
-> Term s (l a :--> (a :--> l a))
forall a (b :: S -> Type) (s :: S) (c :: S -> Type).
(PLamN a b s, HasCallStack) =>
(Term s c -> a) -> Term s (c :--> b)
forall (c :: S -> Type).
HasCallStack =>
(Term s c -> Term s a -> Term s (l a))
-> Term s (c :--> (a :--> l a))
plam (\Term s (l a)
xs Term s a
x -> Term s (a :--> (l a :--> l a))
forall (a :: S -> Type) (s :: S).
PElemConstraint l a =>
Term s (a :--> (l a :--> l a))
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(s :: S).
(PListLike list, PElemConstraint list a) =>
Term s (a :--> (list a :--> list a))
pcons Term s (a :--> (l a :--> l a)) -> Term s a -> Term s (l a :--> l a)
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s a
x Term s (l a :--> l a) -> Term s (l a) -> Term s (l a)
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (l a)
xs) Term s (l a :--> (l a :--> l a))
-> Term s (l a) -> Term s (l a :--> l a)
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (l a)
forall (a :: S -> Type) (s :: S).
PElemConstraint l a =>
Term s (l a)
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(s :: S).
(PListLike list, PElemConstraint list a) =>
Term s (list a)
pnil
pcheckSorted ::
forall (l :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S).
(PIsListLike l a, POrd a) =>
Term s (l a :--> PBool)
pcheckSorted :: forall (l :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S).
(PIsListLike l a, POrd a) =>
Term s (l a :--> PBool)
pcheckSorted =
Term
s (((l a :--> PBool) :--> (l a :--> PBool)) :--> (l a :--> PBool))
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (((a :--> b) :--> (a :--> b)) :--> (a :--> b))
pfix Term
s (((l a :--> PBool) :--> (l a :--> PBool)) :--> (l a :--> PBool))
-> Term s ((l a :--> PBool) :--> (l a :--> PBool))
-> Term s (l a :--> PBool)
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
#$ (Term s (l a :--> PBool) -> Term s (l a) -> Term s PBool)
-> Term s ((l a :--> PBool) :--> (l a :--> PBool))
forall a (b :: S -> Type) (s :: S) (c :: S -> Type).
(PLamN a b s, HasCallStack) =>
(Term s c -> a) -> Term s (c :--> b)
forall (c :: S -> Type).
HasCallStack =>
(Term s c -> Term s (l a) -> Term s PBool)
-> Term s (c :--> (l a :--> PBool))
plam ((Term s (l a :--> PBool) -> Term s (l a) -> Term s PBool)
-> Term s ((l a :--> PBool) :--> (l a :--> PBool)))
-> (Term s (l a :--> PBool) -> Term s (l a) -> Term s PBool)
-> Term s ((l a :--> PBool) :--> (l a :--> PBool))
forall a b. (a -> b) -> a -> b
$ \Term s (l a :--> PBool)
self Term s (l a)
xs ->
(Term s a -> Term s (l a) -> Term s PBool)
-> Term s PBool -> Term s (l a) -> Term s PBool
forall (a :: S -> Type) (s :: S) (r :: S -> Type).
PElemConstraint l a =>
(Term s a -> Term s (l a) -> Term s r)
-> Term s r -> Term s (l a) -> Term s r
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S)
(r :: S -> Type).
(PListLike list, PElemConstraint list a) =>
(Term s a -> Term s (list a) -> Term s r)
-> Term s r -> Term s (list a) -> Term s r
pelimList
( \Term s a
x1 Term s (l a)
xs ->
(Term s a -> Term s (l a) -> Term s PBool)
-> Term s PBool -> Term s (l a) -> Term s PBool
forall (a :: S -> Type) (s :: S) (r :: S -> Type).
PElemConstraint l a =>
(Term s a -> Term s (l a) -> Term s r)
-> Term s r -> Term s (l a) -> Term s r
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S)
(r :: S -> Type).
(PListLike list, PElemConstraint list a) =>
(Term s a -> Term s (list a) -> Term s r)
-> Term s r -> Term s (list a) -> Term s r
pelimList
(\Term s a
x2 Term s (l a)
_ -> Term s a
x1 Term s a -> Term s a -> Term s PBool
forall (s :: S). Term s a -> Term s a -> Term s PBool
forall (t :: S -> Type) (s :: S).
POrd t =>
Term s t -> Term s t -> Term s PBool
#<= Term s a
x2 Term s PBool -> Term s PBool -> Term s PBool
forall (s :: S). Term s PBool -> Term s PBool -> Term s PBool
#&& (Term s (l a :--> PBool)
self Term s (l a :--> PBool) -> Term s (l a) -> Term s PBool
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (l a)
xs))
Term s PBool
forall (s :: S). Term s PBool
ptrue
Term s (l a)
xs
)
Term s PBool
forall (s :: S). Term s PBool
ptrue
Term s (l a)
xs
pelem :: (PIsListLike list a, PEq a) => Term s (a :--> list a :--> PBool)
pelem :: forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(s :: S).
(PIsListLike list a, PEq a) =>
Term s (a :--> (list a :--> PBool))
pelem =
ClosedTerm (a :--> (list a :--> PBool))
-> Term s (a :--> (list a :--> PBool))
forall (a :: S -> Type) (s :: S).
HasCallStack =>
ClosedTerm a -> Term s a
phoistAcyclic (ClosedTerm (a :--> (list a :--> PBool))
-> Term s (a :--> (list a :--> PBool)))
-> ClosedTerm (a :--> (list a :--> PBool))
-> Term s (a :--> (list a :--> PBool))
forall a b. (a -> b) -> a -> b
$
(Term s a -> Term s (list a :--> PBool))
-> Term s (a :--> (list a :--> PBool))
forall a (b :: S -> Type) (s :: S) (c :: S -> Type).
(PLamN a b s, HasCallStack) =>
(Term s c -> a) -> Term s (c :--> b)
forall (c :: S -> Type).
HasCallStack =>
(Term s c -> Term s (list a :--> PBool))
-> Term s (c :--> (list a :--> PBool))
plam ((Term s a -> Term s (list a :--> PBool))
-> Term s (a :--> (list a :--> PBool)))
-> (Term s a -> Term s (list a :--> PBool))
-> Term s (a :--> (list a :--> PBool))
forall a b. (a -> b) -> a -> b
$ \Term s a
needle ->
(Term s (list a :--> PBool)
-> Term s a -> Term s (list a) -> Term s PBool)
-> (Term s (list a :--> PBool) -> Term s PBool)
-> Term s (list a :--> PBool)
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S)
(r :: S -> Type).
PIsListLike list a =>
(Term s (list a :--> r) -> Term s a -> Term s (list a) -> Term s r)
-> (Term s (list a :--> r) -> Term s r) -> Term s (list a :--> r)
precList
(\Term s (list a :--> PBool)
self Term s a
x Term s (list a)
xs -> Term s PBool -> Term s PBool -> Term s PBool -> Term s PBool
forall (a :: S -> Type) (s :: S).
Term s PBool -> Term s a -> Term s a -> Term s a
pif (Term s a
x Term s a -> Term s a -> Term s PBool
forall (s :: S). Term s a -> Term s a -> Term s PBool
forall (t :: S -> Type) (s :: S).
PEq t =>
Term s t -> Term s t -> Term s PBool
#== Term s a
needle) (PBool s -> Term s PBool
forall (a :: S -> Type) (s :: S). PlutusType a => a s -> Term s a
pcon PBool s
forall (s :: S). PBool s
PTrue) (Term s (list a :--> PBool)
self Term s (list a :--> PBool) -> Term s (list a) -> Term s PBool
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (list a)
xs))
(\Term s (list a :--> PBool)
_self -> PBool s -> Term s PBool
forall (a :: S -> Type) (s :: S). PlutusType a => a s -> Term s a
pcon PBool s
forall (s :: S). PBool s
PFalse)
plistEquals :: (PIsListLike list a, PEq a) => Term s (list a :--> list a :--> PBool)
plistEquals :: forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(s :: S).
(PIsListLike list a, PEq a) =>
Term s (list a :--> (list a :--> PBool))
plistEquals =
ClosedTerm (list a :--> (list a :--> PBool))
-> Term s (list a :--> (list a :--> PBool))
forall (a :: S -> Type) (s :: S).
HasCallStack =>
ClosedTerm a -> Term s a
phoistAcyclic (ClosedTerm (list a :--> (list a :--> PBool))
-> Term s (list a :--> (list a :--> PBool)))
-> ClosedTerm (list a :--> (list a :--> PBool))
-> Term s (list a :--> (list a :--> PBool))
forall a b. (a -> b) -> a -> b
$
Term
s
(((list a :--> (list a :--> PBool))
:--> (list a :--> (list a :--> PBool)))
:--> (list a :--> (list a :--> PBool)))
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (((a :--> b) :--> (a :--> b)) :--> (a :--> b))
pfix Term
s
(((list a :--> (list a :--> PBool))
:--> (list a :--> (list a :--> PBool)))
:--> (list a :--> (list a :--> PBool)))
-> Term
s
((list a :--> (list a :--> PBool))
:--> (list a :--> (list a :--> PBool)))
-> Term s (list a :--> (list a :--> PBool))
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
#$ (Term s (list a :--> (list a :--> PBool))
-> Term s (list a) -> Term s (list a) -> Term s PBool)
-> Term
s
((list a :--> (list a :--> PBool))
:--> (list a :--> (list a :--> PBool)))
forall a (b :: S -> Type) (s :: S) (c :: S -> Type).
(PLamN a b s, HasCallStack) =>
(Term s c -> a) -> Term s (c :--> b)
forall (c :: S -> Type).
HasCallStack =>
(Term s c -> Term s (list a) -> Term s (list a) -> Term s PBool)
-> Term s (c :--> (list a :--> (list a :--> PBool)))
plam ((Term s (list a :--> (list a :--> PBool))
-> Term s (list a) -> Term s (list a) -> Term s PBool)
-> Term
s
((list a :--> (list a :--> PBool))
:--> (list a :--> (list a :--> PBool))))
-> (Term s (list a :--> (list a :--> PBool))
-> Term s (list a) -> Term s (list a) -> Term s PBool)
-> Term
s
((list a :--> (list a :--> PBool))
:--> (list a :--> (list a :--> PBool)))
forall a b. (a -> b) -> a -> b
$ \Term s (list a :--> (list a :--> PBool))
self Term s (list a)
xlist Term s (list a)
ylist ->
(Term s a -> Term s (list a) -> Term s PBool)
-> Term s PBool -> Term s (list a) -> Term s PBool
forall (a :: S -> Type) (s :: S) (r :: S -> Type).
PElemConstraint list a =>
(Term s a -> Term s (list a) -> Term s r)
-> Term s r -> Term s (list a) -> Term s r
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S)
(r :: S -> Type).
(PListLike list, PElemConstraint list a) =>
(Term s a -> Term s (list a) -> Term s r)
-> Term s r -> Term s (list a) -> Term s r
pelimList
( \Term s a
x Term s (list a)
xs ->
(Term s a -> Term s (list a) -> Term s PBool)
-> Term s PBool -> Term s (list a) -> Term s PBool
forall (a :: S -> Type) (s :: S) (r :: S -> Type).
PElemConstraint list a =>
(Term s a -> Term s (list a) -> Term s r)
-> Term s r -> Term s (list a) -> Term s r
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S)
(r :: S -> Type).
(PListLike list, PElemConstraint list a) =>
(Term s a -> Term s (list a) -> Term s r)
-> Term s r -> Term s (list a) -> Term s r
pelimList (\Term s a
y Term s (list a)
ys -> Term s PBool -> Term s PBool -> Term s PBool -> Term s PBool
forall (a :: S -> Type) (s :: S).
Term s PBool -> Term s a -> Term s a -> Term s a
pif (Term s a
x Term s a -> Term s a -> Term s PBool
forall (s :: S). Term s a -> Term s a -> Term s PBool
forall (t :: S -> Type) (s :: S).
PEq t =>
Term s t -> Term s t -> Term s PBool
#== Term s a
y) (Term s (list a :--> (list a :--> PBool))
self Term s (list a :--> (list a :--> PBool))
-> Term s (list a) -> Term s (list a :--> PBool)
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (list a)
xs Term s (list a :--> PBool) -> Term s (list a) -> Term s PBool
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (list a)
ys) (AsHaskell PBool -> Term s PBool
forall (a :: S -> Type) (s :: S).
PLiftable a =>
AsHaskell a -> Term s a
pconstant Bool
AsHaskell PBool
False)) (AsHaskell PBool -> Term s PBool
forall (a :: S -> Type) (s :: S).
PLiftable a =>
AsHaskell a -> Term s a
pconstant Bool
AsHaskell PBool
False) Term s (list a)
ylist
)
((Term s a -> Term s (list a) -> Term s PBool)
-> Term s PBool -> Term s (list a) -> Term s PBool
forall (a :: S -> Type) (s :: S) (r :: S -> Type).
PElemConstraint list a =>
(Term s a -> Term s (list a) -> Term s r)
-> Term s r -> Term s (list a) -> Term s r
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S)
(r :: S -> Type).
(PListLike list, PElemConstraint list a) =>
(Term s a -> Term s (list a) -> Term s r)
-> Term s r -> Term s (list a) -> Term s r
pelimList (\Term s a
_ Term s (list a)
_ -> AsHaskell PBool -> Term s PBool
forall (a :: S -> Type) (s :: S).
PLiftable a =>
AsHaskell a -> Term s a
pconstant Bool
AsHaskell PBool
False) (AsHaskell PBool -> Term s PBool
forall (a :: S -> Type) (s :: S).
PLiftable a =>
AsHaskell a -> Term s a
pconstant Bool
AsHaskell PBool
True) Term s (list a)
ylist)
Term s (list a)
xlist
(#!!) :: PIsListLike l a => Term s (l a) -> Term s PInteger -> Term s a
Term s (l a)
l #!! :: forall (l :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S).
PIsListLike l a =>
Term s (l a) -> Term s PInteger -> Term s a
#!! Term s PInteger
i = Term s (PInteger :--> (l a :--> a))
forall (l :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S).
PIsListLike l a =>
Term s (PInteger :--> (l a :--> a))
pelemAt Term s (PInteger :--> (l a :--> a))
-> Term s PInteger -> Term s (l a :--> a)
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s PInteger
i Term s (l a :--> a) -> Term s (l a) -> Term s a
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (l a)
l
pelemAt :: PIsListLike l a => Term s (PInteger :--> l a :--> a)
pelemAt :: forall (l :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S).
PIsListLike l a =>
Term s (PInteger :--> (l a :--> a))
pelemAt = ClosedTerm (PInteger :--> (l a :--> a))
-> Term s (PInteger :--> (l a :--> a))
forall (a :: S -> Type) (s :: S).
HasCallStack =>
ClosedTerm a -> Term s a
phoistAcyclic (ClosedTerm (PInteger :--> (l a :--> a))
-> Term s (PInteger :--> (l a :--> a)))
-> ClosedTerm (PInteger :--> (l a :--> a))
-> Term s (PInteger :--> (l a :--> a))
forall a b. (a -> b) -> a -> b
$
(Term s PInteger -> Term s (l a) -> Term s a)
-> Term s (PInteger :--> (l a :--> a))
forall a (b :: S -> Type) (s :: S) (c :: S -> Type).
(PLamN a b s, HasCallStack) =>
(Term s c -> a) -> Term s (c :--> b)
forall (c :: S -> Type).
HasCallStack =>
(Term s c -> Term s (l a) -> Term s a)
-> Term s (c :--> (l a :--> a))
plam ((Term s PInteger -> Term s (l a) -> Term s a)
-> Term s (PInteger :--> (l a :--> a)))
-> (Term s PInteger -> Term s (l a) -> Term s a)
-> Term s (PInteger :--> (l a :--> a))
forall a b. (a -> b) -> a -> b
$ \Term s PInteger
n Term s (l a)
xs ->
Term s PBool -> Term s a -> Term s a -> Term s a
forall (a :: S -> Type) (s :: S).
Term s PBool -> Term s a -> Term s a -> Term s a
pif
(Term s PInteger
n Term s PInteger -> Term s PInteger -> Term s PBool
forall (s :: S). Term s PInteger -> Term s PInteger -> Term s PBool
forall (t :: S -> Type) (s :: S).
POrd t =>
Term s t -> Term s t -> Term s PBool
#< Term s PInteger
0)
(Term s PString -> Term s a -> Term s a
forall (a :: S -> Type) (s :: S).
Term s PString -> Term s a -> Term s a
ptraceInfo Term s PString
"pelemAt: negative index" Term s a
forall (s :: S) (a :: S -> Type). Term s a
perror)
(Term s (PInteger :--> (l a :--> a))
forall (l :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S).
PIsListLike l a =>
Term s (PInteger :--> (l a :--> a))
pelemAt' Term s (PInteger :--> (l a :--> a))
-> Term s PInteger -> Term s (l a :--> a)
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s PInteger
n Term s (l a :--> a) -> Term s (l a) -> Term s a
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (l a)
xs)
pelemAt' :: PIsListLike l a => Term s (PInteger :--> l a :--> a)
pelemAt' :: forall (l :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S).
PIsListLike l a =>
Term s (PInteger :--> (l a :--> a))
pelemAt' = ClosedTerm (PInteger :--> (l a :--> a))
-> Term s (PInteger :--> (l a :--> a))
forall (a :: S -> Type) (s :: S).
HasCallStack =>
ClosedTerm a -> Term s a
phoistAcyclic (ClosedTerm (PInteger :--> (l a :--> a))
-> Term s (PInteger :--> (l a :--> a)))
-> ClosedTerm (PInteger :--> (l a :--> a))
-> Term s (PInteger :--> (l a :--> a))
forall a b. (a -> b) -> a -> b
$
Term
s
(((PInteger :--> (l a :--> a)) :--> (PInteger :--> (l a :--> a)))
:--> (PInteger :--> (l a :--> a)))
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (((a :--> b) :--> (a :--> b)) :--> (a :--> b))
pfix Term
s
(((PInteger :--> (l a :--> a)) :--> (PInteger :--> (l a :--> a)))
:--> (PInteger :--> (l a :--> a)))
-> Term
s ((PInteger :--> (l a :--> a)) :--> (PInteger :--> (l a :--> a)))
-> Term s (PInteger :--> (l a :--> a))
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
#$ (Term s (PInteger :--> (l a :--> a))
-> Term s PInteger -> Term s (l a) -> Term s a)
-> Term
s ((PInteger :--> (l a :--> a)) :--> (PInteger :--> (l a :--> a)))
forall a (b :: S -> Type) (s :: S) (c :: S -> Type).
(PLamN a b s, HasCallStack) =>
(Term s c -> a) -> Term s (c :--> b)
forall (c :: S -> Type).
HasCallStack =>
(Term s c -> Term s PInteger -> Term s (l a) -> Term s a)
-> Term s (c :--> (PInteger :--> (l a :--> a)))
plam ((Term s (PInteger :--> (l a :--> a))
-> Term s PInteger -> Term s (l a) -> Term s a)
-> Term
s ((PInteger :--> (l a :--> a)) :--> (PInteger :--> (l a :--> a))))
-> (Term s (PInteger :--> (l a :--> a))
-> Term s PInteger -> Term s (l a) -> Term s a)
-> Term
s ((PInteger :--> (l a :--> a)) :--> (PInteger :--> (l a :--> a)))
forall a b. (a -> b) -> a -> b
$ \Term s (PInteger :--> (l a :--> a))
self Term s PInteger
n Term s (l a)
xs ->
Term s PBool -> Term s a -> Term s a -> Term s a
forall (a :: S -> Type) (s :: S).
Term s PBool -> Term s a -> Term s a -> Term s a
pif
(Term s PInteger
n Term s PInteger -> Term s PInteger -> Term s PBool
forall (s :: S). Term s PInteger -> Term s PInteger -> Term s PBool
forall (t :: S -> Type) (s :: S).
PEq t =>
Term s t -> Term s t -> Term s PBool
#== Term s PInteger
0)
(Term s (l a :--> a)
forall (a :: S -> Type) (s :: S).
PElemConstraint l a =>
Term s (l a :--> a)
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(s :: S).
(PListLike list, PElemConstraint list a) =>
Term s (list a :--> a)
phead Term s (l a :--> a) -> Term s (l a) -> Term s a
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (l a)
xs)
(Term s (PInteger :--> (l a :--> a))
self Term s (PInteger :--> (l a :--> a))
-> Term s PInteger -> Term s (l a :--> a)
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# (Term s PInteger
n Term s PInteger -> Term s PInteger -> Term s PInteger
forall a. Num a => a -> a -> a
- Term s PInteger
1) Term s (l a :--> a) -> Term s (l a) -> Term s a
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
#$ Term s (l a :--> l a)
forall (a :: S -> Type) (s :: S).
PElemConstraint l a =>
Term s (l a :--> l a)
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(s :: S).
(PListLike list, PElemConstraint list a) =>
Term s (list a :--> list a)
ptail Term s (l a :--> l a) -> Term s (l a) -> Term s (l a)
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (l a)
xs)
pmatchListN ::
forall b li a s.
PIsListLike li a =>
Integer ->
Term s (li a) ->
([Term s a] -> Term s (li a) -> Term s b) ->
Term s b
pmatchListN :: forall (b :: S -> Type) (li :: (S -> Type) -> S -> Type)
(a :: S -> Type) (s :: S).
PIsListLike li a =>
Integer
-> Term s (li a)
-> ([Term s a] -> Term s (li a) -> Term s b)
-> Term s b
pmatchListN Integer
n Term s (li a)
xs [Term s a] -> Term s (li a) -> Term s b
f = (InternalConfig -> Term s b) -> Term s b
forall (s :: S) (a :: S -> Type).
(InternalConfig -> Term s a) -> Term s a
pgetInternalConfig ((InternalConfig -> Term s b) -> Term s b)
-> (InternalConfig -> Term s b) -> Term s b
forall a b. (a -> b) -> a -> b
$ \InternalConfig
cfg -> TermCont @b s (Term s b) -> Term s b
forall (a :: S -> Type) (s :: S).
TermCont @a s (Term s a) -> Term s a
unTermCont (TermCont @b s (Term s b) -> Term s b)
-> TermCont @b s (Term s b) -> Term s b
forall a b. (a -> b) -> a -> b
$ do
let
placeholders :: [Term s a]
placeholders = Integer -> Term s a
forall (s :: S) (a :: S -> Type). Integer -> Term s a
pplaceholder (Integer -> Term s a) -> [Integer] -> [Term s a]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> [Integer
Item [Integer]
0 .. (Integer
n Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)]
placeholderApplied :: Term s b
placeholderApplied = InternalConfig -> Term s b -> Term s b
forall (s :: S) (a :: S -> Type).
InternalConfig -> Term s a -> Term s a
pwithInternalConfig (Bool -> InternalConfig
InternalConfig Bool
False) (Term s b -> Term s b) -> Term s b -> Term s b
forall a b. (a -> b) -> a -> b
$ [Term s a] -> Term s (li a) -> Term s b
f [Term s a]
placeholders (Integer -> Term s (li a)
forall (s :: S) (a :: S -> Type). Integer -> Term s a
pplaceholder Integer
n)
[Integer]
usedFields <-
if InternalConfig -> Bool
internalConfig'dataRecPMatchOptimization InternalConfig
cfg
then Term s b -> TermCont @b s [Integer]
forall {r :: S -> Type} (s :: S) (a :: S -> Type).
Term s a -> TermCont @r s [Integer]
pfindAllPlaceholders Term s b
placeholderApplied
else [Integer] -> TermCont @b s [Integer]
forall a. a -> TermCont @b s a
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure [Integer
Item [Integer]
0 .. Integer
Item [Integer]
n]
Term s b -> TermCont @b s (Term s b)
forall a. a -> TermCont @b s a
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Term s b -> TermCont @b s (Term s b))
-> Term s b -> TermCont @b s (Term s b)
forall a b. (a -> b) -> a -> b
$ Integer
-> [Integer]
-> Term s (li a)
-> ([Term s a] -> Term s (li a) -> Term s b)
-> Term s b
forall (b :: S -> Type) (li :: (S -> Type) -> S -> Type)
(a :: S -> Type) (s :: S).
PIsListLike li a =>
Integer
-> [Integer]
-> Term s (li a)
-> ([Term s a] -> Term s (li a) -> Term s b)
-> Term s b
pmatchList' Integer
n [Integer]
usedFields Term s (li a)
xs [Term s a] -> Term s (li a) -> Term s b
f
pmatchList ::
forall n r li a s.
( PIsListLike li a
, KnownNat (Length (Replicate n a))
, UnsafeConstrNP (Replicate n a)
) =>
Term s (li a) ->
(NP (Term s) (Replicate n a) -> Term s (li a) -> Term s r) ->
Term s r
pmatchList :: forall (n :: Natural) (r :: S -> Type)
(li :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S).
(PIsListLike li a,
KnownNat (Length @(S -> Type) (Replicate @(S -> Type) n a)),
UnsafeConstrNP (Replicate @(S -> Type) n a)) =>
Term s (li a)
-> (NP @(S -> Type) (Term s) (Replicate @(S -> Type) n a)
-> Term s (li a) -> Term s r)
-> Term s r
pmatchList = forall (struct :: [S -> Type]) (r :: S -> Type)
(li :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S).
(PIsListLike li a, KnownNat (Length @(S -> Type) struct),
UnsafeConstrNP struct) =>
Term s (li a)
-> (NP @(S -> Type) (Term s) struct -> Term s (li a) -> Term s r)
-> Term s r
pmatchListUnsafe @(Replicate n a)
pmatchListUnsafe ::
forall (struct :: [S -> Type]) r li a s.
(PIsListLike li a, KnownNat (Length struct), UnsafeConstrNP struct) =>
Term s (li a) ->
(NP (Term s) struct -> Term s (li a) -> Term s r) ->
Term s r
pmatchListUnsafe :: forall (struct :: [S -> Type]) (r :: S -> Type)
(li :: (S -> Type) -> S -> Type) (a :: S -> Type) (s :: S).
(PIsListLike li a, KnownNat (Length @(S -> Type) struct),
UnsafeConstrNP struct) =>
Term s (li a)
-> (NP @(S -> Type) (Term s) struct -> Term s (li a) -> Term s r)
-> Term s r
pmatchListUnsafe Term s (li a)
xs NP @(S -> Type) (Term s) struct -> Term s (li a) -> Term s r
f =
let
go :: [Term s a] -> Term s (li a) -> Term s r
go [Term s a]
xs' Term s (li a)
rest =
case forall (xs :: [S -> Type]) (a :: S -> Type) (s :: S).
UnsafeConstrNP xs =>
[Term s a] -> Maybe (NP @(S -> Type) (Term s) xs)
constrNP @struct [Term s a]
xs' of
Maybe (NP @(S -> Type) (Term s) struct)
Nothing -> [Char] -> Term s r
forall a. HasCallStack => [Char] -> a
error [Char]
"impossible"
Just NP @(S -> Type) (Term s) struct
xs'' -> NP @(S -> Type) (Term s) struct -> Term s (li a) -> Term s r
f NP @(S -> Type) (Term s) struct
xs'' Term s (li a)
rest
in
Integer
-> Term s (li a)
-> ([Term s a] -> Term s (li a) -> Term s r)
-> Term s r
forall (b :: S -> Type) (li :: (S -> Type) -> S -> Type)
(a :: S -> Type) (s :: S).
PIsListLike li a =>
Integer
-> Term s (li a)
-> ([Term s a] -> Term s (li a) -> Term s b)
-> Term s b
pmatchListN (Proxy @Natural (Length @(S -> Type) struct) -> Integer
forall (n :: Natural) (proxy :: Natural -> Type).
KnownNat n =>
proxy n -> Integer
natVal (forall (t :: Natural). Proxy @Natural t
forall {k} (t :: k). Proxy @k t
Proxy @(Length struct))) Term s (li a)
xs [Term s a] -> Term s (li a) -> Term s r
go
pmatchList' ::
forall b li a s.
PIsListLike li a =>
Integer ->
[Integer] ->
Term s (li a) ->
([Term s a] -> Term s (li a) -> Term s b) ->
Term s b
pmatchList' :: forall (b :: S -> Type) (li :: (S -> Type) -> S -> Type)
(a :: S -> Type) (s :: S).
PIsListLike li a =>
Integer
-> [Integer]
-> Term s (li a)
-> ([Term s a] -> Term s (li a) -> Term s b)
-> Term s b
pmatchList' Integer
n [Integer]
usedFields Term s (li a)
xs [Term s a] -> Term s (li a) -> Term s b
f = TermCont @b s (Term s b) -> Term s b
forall (a :: S -> Type) (s :: S).
TermCont @a s (Term s a) -> Term s a
unTermCont (TermCont @b s (Term s b) -> Term s b)
-> TermCont @b s (Term s b) -> Term s b
forall a b. (a -> b) -> a -> b
$ do
let
mkMatches ::
Integer ->
Term s (li a) ->
(Integer, Term s (li a)) ->
([(Term s a, Term s (li a))] -> Term s r) ->
Term s r
mkMatches :: forall (r :: S -> Type).
Integer
-> Term s (li a)
-> (Integer, Term s (li a))
-> ([(Term s a, Term s (li a))] -> Term s r)
-> Term s r
mkMatches Integer
idx Term s (li a)
running lastBind :: (Integer, Term s (li a))
lastBind@(Integer
lastBindIdx, Term s (li a)
lastBindT) [(Term s a, Term s (li a))] -> Term s r
cps
| Integer
idx Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
n = [(Term s a, Term s (li a))] -> Term s r
cps []
| Integer
idx Integer -> [Integer] -> Bool
forall a. Eq a => a -> [a] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` [Integer]
usedFields =
let
isLastBind :: Bool
isLastBind = (Integer -> Bool) -> [Integer] -> Bool
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Bool
all (Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
idx) [Integer]
usedFields
dropAmount :: Int
dropAmount = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Integer -> Int) -> Integer -> Int
forall a b. (a -> b) -> a -> b
$ Integer
idx Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
lastBindIdx
dropToCurrent' :: forall s'. Term s' (li a) -> Term s' (li a)
dropToCurrent' :: forall (s' :: S). Term s' (li a) -> Term s' (li a)
dropToCurrent' = ((Term s' (li a) -> Term s' (li a))
-> (Term s' (li a) -> Term s' (li a))
-> Term s' (li a)
-> Term s' (li a))
-> (Term s' (li a) -> Term s' (li a))
-> [Term s' (li a) -> Term s' (li a)]
-> Term s' (li a)
-> Term s' (li a)
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: Type -> Type) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (Term s' (li a) -> Term s' (li a))
-> (Term s' (li a) -> Term s' (li a))
-> Term s' (li a)
-> Term s' (li a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
(.) Term s' (li a) -> Term s' (li a)
forall a. a -> a
id ([Term s' (li a) -> Term s' (li a)]
-> Term s' (li a) -> Term s' (li a))
-> [Term s' (li a) -> Term s' (li a)]
-> Term s' (li a)
-> Term s' (li a)
forall a b. (a -> b) -> a -> b
$ Int
-> (Term s' (li a) -> Term s' (li a))
-> [Term s' (li a) -> Term s' (li a)]
forall a. Int -> a -> [a]
replicate Int
dropAmount (Term s' (li a :--> li a)
forall (a :: S -> Type) (s :: S).
PElemConstraint li a =>
Term s (li a :--> li a)
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(s :: S).
(PListLike list, PElemConstraint list a) =>
Term s (list a :--> list a)
ptail #)
currentTerm :: Term s (li a)
currentTerm
| Bool
isLastBind Bool -> Bool -> Bool
|| Int
dropAmount Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
3 = Term s (li a) -> Term s (li a)
forall (s' :: S). Term s' (li a) -> Term s' (li a)
dropToCurrent' Term s (li a)
lastBindT
| Bool
otherwise = ClosedTerm (li a :--> li a) -> Term s (li a :--> li a)
forall (a :: S -> Type) (s :: S).
HasCallStack =>
ClosedTerm a -> Term s a
phoistAcyclic ((Term s (li a) -> Term s (li a)) -> Term s (li a :--> li a)
forall a (b :: S -> Type) (s :: S) (c :: S -> Type).
(PLamN a b s, HasCallStack) =>
(Term s c -> a) -> Term s (c :--> b)
forall (c :: S -> Type).
HasCallStack =>
(Term s c -> Term s (li a)) -> Term s (c :--> li a)
plam Term s (li a) -> Term s (li a)
forall (s' :: S). Term s' (li a) -> Term s' (li a)
dropToCurrent') Term s (li a :--> li a) -> Term s (li a) -> Term s (li a)
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (li a)
lastBindT
bindIfNeeded :: Term s (li a) -> (Term s (li a) -> Term s r) -> Term s r
bindIfNeeded = if Bool
isLastBind then (\Term s (li a)
a Term s (li a) -> Term s r
h -> Term s (li a) -> Term s r
h Term s (li a)
a) else Term s (li a) -> (Term s (li a) -> Term s r) -> Term s r
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s a -> (Term s a -> Term s b) -> Term s b
plet
in
Term s (li a) -> (Term s (li a) -> Term s r) -> Term s r
bindIfNeeded Term s (li a)
currentTerm ((Term s (li a) -> Term s r) -> Term s r)
-> (Term s (li a) -> Term s r) -> Term s r
forall a b. (a -> b) -> a -> b
$ \Term s (li a)
newBind ->
Integer
-> Term s (li a)
-> (Integer, Term s (li a))
-> ([(Term s a, Term s (li a))] -> Term s r)
-> Term s r
forall (r :: S -> Type).
Integer
-> Term s (li a)
-> (Integer, Term s (li a))
-> ([(Term s a, Term s (li a))] -> Term s r)
-> Term s r
mkMatches (Integer
idx Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
1) (Term s (li a :--> li a)
forall (a :: S -> Type) (s :: S).
PElemConstraint li a =>
Term s (li a :--> li a)
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(s :: S).
(PListLike list, PElemConstraint list a) =>
Term s (list a :--> list a)
ptail Term s (li a :--> li a) -> Term s (li a) -> Term s (li a)
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (li a)
running) (Integer
idx, Term s (li a)
newBind) (([(Term s a, Term s (li a))] -> Term s r) -> Term s r)
-> ([(Term s a, Term s (li a))] -> Term s r) -> Term s r
forall a b. (a -> b) -> a -> b
$ \[(Term s a, Term s (li a))]
rest ->
[(Term s a, Term s (li a))] -> Term s r
cps ([(Term s a, Term s (li a))] -> Term s r)
-> [(Term s a, Term s (li a))] -> Term s r
forall a b. (a -> b) -> a -> b
$ (Term s (li a :--> a)
forall (a :: S -> Type) (s :: S).
PElemConstraint li a =>
Term s (li a :--> a)
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(s :: S).
(PListLike list, PElemConstraint list a) =>
Term s (list a :--> a)
phead Term s (li a :--> a) -> Term s (li a) -> Term s a
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (li a)
newBind, Term s (li a)
newBind) (Term s a, Term s (li a))
-> [(Term s a, Term s (li a))] -> [(Term s a, Term s (li a))]
forall a. a -> [a] -> [a]
: [(Term s a, Term s (li a))]
rest
| Bool
otherwise =
Integer
-> Term s (li a)
-> (Integer, Term s (li a))
-> ([(Term s a, Term s (li a))] -> Term s r)
-> Term s r
forall (r :: S -> Type).
Integer
-> Term s (li a)
-> (Integer, Term s (li a))
-> ([(Term s a, Term s (li a))] -> Term s r)
-> Term s r
mkMatches (Integer
idx Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
1) (Term s (li a :--> li a)
forall (a :: S -> Type) (s :: S).
PElemConstraint li a =>
Term s (li a :--> li a)
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(s :: S).
(PListLike list, PElemConstraint list a) =>
Term s (list a :--> list a)
ptail Term s (li a :--> li a) -> Term s (li a) -> Term s (li a)
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (li a)
running) (Integer, Term s (li a))
lastBind (([(Term s a, Term s (li a))] -> Term s r) -> Term s r)
-> ([(Term s a, Term s (li a))] -> Term s r) -> Term s r
forall a b. (a -> b) -> a -> b
$
\[(Term s a, Term s (li a))]
rest ->
[(Term s a, Term s (li a))] -> Term s r
cps ([(Term s a, Term s (li a))] -> Term s r)
-> [(Term s a, Term s (li a))] -> Term s r
forall a b. (a -> b) -> a -> b
$ (Term s (li a :--> a)
forall (a :: S -> Type) (s :: S).
PElemConstraint li a =>
Term s (li a :--> a)
forall (list :: (S -> Type) -> S -> Type) (a :: S -> Type)
(s :: S).
(PListLike list, PElemConstraint list a) =>
Term s (list a :--> a)
phead Term s (li a :--> a) -> Term s (li a) -> Term s a
forall (s :: S) (a :: S -> Type) (b :: S -> Type).
Term s (a :--> b) -> Term s a -> Term s b
# Term s (li a)
running, Term s (li a)
running) (Term s a, Term s (li a))
-> [(Term s a, Term s (li a))] -> [(Term s a, Term s (li a))]
forall a. a -> [a] -> [a]
: [(Term s a, Term s (li a))]
rest
Term s b -> TermCont @b s (Term s b)
forall a. a -> TermCont @b s a
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Term s b -> TermCont @b s (Term s b))
-> Term s b -> TermCont @b s (Term s b)
forall a b. (a -> b) -> a -> b
$ Integer
-> Term s (li a)
-> (Integer, Term s (li a))
-> ([(Term s a, Term s (li a))] -> Term s b)
-> Term s b
forall (r :: S -> Type).
Integer
-> Term s (li a)
-> (Integer, Term s (li a))
-> ([(Term s a, Term s (li a))] -> Term s r)
-> Term s r
mkMatches Integer
0 Term s (li a)
xs (Integer
0, Term s (li a)
xs) (([Term s a] -> Term s (li a) -> Term s b)
-> ([Term s a], Term s (li a)) -> Term s b
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry [Term s a] -> Term s (li a) -> Term s b
f (([Term s a], Term s (li a)) -> Term s b)
-> ([(Term s a, Term s (li a))] -> ([Term s a], Term s (li a)))
-> [(Term s a, Term s (li a))]
-> Term s b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ([Term s a] -> [Term s a])
-> ([Term s (li a)] -> Term s (li a))
-> ([Term s a], [Term s (li a)])
-> ([Term s a], Term s (li a))
forall a b c d. (a -> b) -> (c -> d) -> (a, c) -> (b, d)
forall (p :: Type -> Type -> Type) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap (Int -> [Term s a] -> [Term s a]
forall a. Int -> [a] -> [a]
take (Int -> [Term s a] -> [Term s a])
-> Int -> [Term s a] -> [Term s a]
forall a b. (a -> b) -> a -> b
$ Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
n) [Term s (li a)] -> Term s (li a)
forall a. HasCallStack => [a] -> a
last (([Term s a], [Term s (li a)]) -> ([Term s a], Term s (li a)))
-> ([(Term s a, Term s (li a))] -> ([Term s a], [Term s (li a)]))
-> [(Term s a, Term s (li a))]
-> ([Term s a], Term s (li a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [(Term s a, Term s (li a))] -> ([Term s a], [Term s (li a)])
forall a b. [(a, b)] -> ([a], [b])
unzip)
type family Length xs where
Length '[] = 0
Length (_ ': xs) = 1 + Length xs
type family Replicate n a where
Replicate 0 _ = '[]
Replicate x a = a ': Replicate (x - 1) a
class UnsafeConstrNP xs where
constrNP :: forall a s. [Term s a] -> Maybe (NP (Term s) xs)
instance UnsafeConstrNP xs => UnsafeConstrNP (x ': xs) where
constrNP :: forall (a :: S -> Type) (s :: S).
[Term s a]
-> Maybe (NP @(S -> Type) (Term s) ((':) @(S -> Type) x xs))
constrNP [] = Maybe (NP @(S -> Type) (Term s) ((':) @(S -> Type) x xs))
forall a. Maybe a
Nothing
constrNP (Term s a
x : [Term s a]
xs) = do
NP @(S -> Type) (Term s) xs
rest <- forall (xs :: [S -> Type]) (a :: S -> Type) (s :: S).
UnsafeConstrNP xs =>
[Term s a] -> Maybe (NP @(S -> Type) (Term s) xs)
constrNP @xs [Term s a]
xs
NP @(S -> Type) (Term s) ((':) @(S -> Type) x xs)
-> Maybe (NP @(S -> Type) (Term s) ((':) @(S -> Type) x xs))
forall a. a -> Maybe a
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (NP @(S -> Type) (Term s) ((':) @(S -> Type) x xs)
-> Maybe (NP @(S -> Type) (Term s) ((':) @(S -> Type) x xs)))
-> NP @(S -> Type) (Term s) ((':) @(S -> Type) x xs)
-> Maybe (NP @(S -> Type) (Term s) ((':) @(S -> Type) x xs))
forall a b. (a -> b) -> a -> b
$ Term s a -> Term s x
forall (b :: S -> Type) (a :: S -> Type) (s :: S).
Term s a -> Term s b
punsafeCoerce Term s a
x Term s x
-> NP @(S -> Type) (Term s) xs
-> NP @(S -> Type) (Term s) ((':) @(S -> Type) x xs)
forall {k} (a :: k -> Type) (x :: k) (xs :: [k]).
a x -> NP @k a xs -> NP @k a ((':) @k x xs)
:* NP @(S -> Type) (Term s) xs
rest
instance UnsafeConstrNP '[] where
constrNP :: forall (a :: S -> Type) (s :: S).
[Term s a] -> Maybe (NP @(S -> Type) (Term s) ('[] @(S -> Type)))
constrNP [Term s a]
_ = NP @(S -> Type) (Term s) ('[] @(S -> Type))
-> Maybe (NP @(S -> Type) (Term s) ('[] @(S -> Type)))
forall a. a -> Maybe a
Just NP @(S -> Type) (Term s) ('[] @(S -> Type))
forall {k} (a :: k -> Type). NP @k a ('[] @k)
Nil