Contract.Prelude
A custom Prelude that re-exports Purescript's prelude and further expands.
Re-exports from Ctl.Internal.Helpers
#liftMWith
#liftM
#liftEither
liftEither :: forall (a :: Type) (e :: Type) (m :: Type -> Type). MonadThrow e m => Either e a -> m a#fromJustEff
fromJustEff :: forall (a :: Type). String -> Maybe a -> Effect aThrows provided error on Nothing
#filterMapWithKeyM
#filterMapM
#appendLastMaybe
appendLastMaybe :: forall (a :: Type). Maybe a -> Maybe a -> Maybe aCombine two Maybes taking the Last Maybe
#appendFirstMaybe
appendFirstMaybe :: forall (a :: Type). Maybe a -> Maybe a -> Maybe aCombine two Maybes taking the First Maybe
#(<\>)
Operator alias for Ctl.Internal.Helpers.appendFirstMaybe (right-associative / precedence 5)
#(<<>>)
Operator alias for Ctl.Internal.Helpers.maybeArrayMerge (right-associative / precedence 5)
#(</>)
Operator alias for Ctl.Internal.Helpers.appendLastMaybe (right-associative / precedence 5)
Re-exports from Data.Either
#Either
data Either a bThe Either type is used to represent a choice between two types of value.
A common use case for Either is error handling, where Left is used to
carry an error value and Right is used to carry a success value.
Constructors
Instances
Functor (Either a)Generic (Either a b) _Invariant (Either a)Apply (Either e)The
Applyinstance allows functions contained within aRightto transform a value contained within aRightusing the(<*>)operator:Right f <*> Right x == Right (f x)Leftvalues are left untouched:Left f <*> Right x == Left f Right f <*> Left y == Left yCombining
Functor's<$>withApply's<*>can be used to transform a pure function to takeEither-typed arguments sof :: a -> b -> cbecomesf :: Either l a -> Either l b -> Either l c:f <$> Right x <*> Right y == Right (f x y)The
Left-preserving behaviour of both operators means the result of an expression like the above but where any one of the values isLeftmeans the whole result becomesLeftalso, taking the firstLeftvalue found:f <$> Left x <*> Right y == Left x f <$> Right x <*> Left y == Left y f <$> Left x <*> Left y == Left xApplicative (Either e)The
Applicativeinstance enables lifting of values intoEitherwith thepurefunction:pure x :: Either _ _ == Right xCombining
Functor's<$>withApply's<*>andApplicative'spurecan be used to pass a mixture ofEitherand non-Eithertyped values to a function that does not usually expect them, by usingpurefor any value that is not alreadyEithertyped:f <$> Right x <*> pure y == Right (f x y)Even though
pure = Rightit is recommended to usepurein situations like this as it allows the choice ofApplicativeto be changed later without having to go through and replaceRightwith a new constructor.Alt (Either e)The
Altinstance allows for a choice to be made between twoEithervalues with the<|>operator, where the firstRightencountered is taken.Right x <|> Right y == Right x Left x <|> Right y == Right y Left x <|> Left y == Left yBind (Either e)The
Bindinstance allows sequencing ofEithervalues and functions that return anEitherby using the>>=operator:Left x >>= f = Left x Right x >>= f = f xEither's "do notation" can be understood to work like this:x :: forall e a. Either e a x = -- y :: forall e b. Either e b y = -- foo :: forall e a. (a -> b -> c) -> Either e c foo f = do x' <- x y' <- y pure (f x' y')...which is equivalent to...
x >>= (\x' -> y >>= (\y' -> pure (f x' y')))...and is the same as writing...
foo :: forall e a. (a -> b -> c) -> Either e c foo f = case x of Left e -> Left e Right x -> case y of Left e -> Left e Right y -> Right (f x y)Monad (Either e)The
Monadinstance guarantees that there are bothApplicativeandBindinstances forEither.Extend (Either e)The
Extendinstance allows sequencing ofEithervalues and functions that accept anEitherand return a non-Eitherresult using the<<=operator.f <<= Left x = Left x f <<= Right x = Right (f (Right x))(Show a, Show b) => Show (Either a b)The
Showinstance allowsEithervalues to be rendered as a string withshowwhenever there is anShowinstance for both type theEithercan contain.(Eq a, Eq b) => Eq (Either a b)The
Eqinstance allowsEithervalues to be checked for equality with==and inequality with/=whenever there is anEqinstance for both types theEithercan contain.(Eq a) => Eq1 (Either a)(Ord a, Ord b) => Ord (Either a b)The
Ordinstance allowsEithervalues to be compared withcompare,>,>=,<and<=whenever there is anOrdinstance for both types theEithercan contain.Any
Leftvalue is considered to be less than aRightvalue.(Ord a) => Ord1 (Either a)(Bounded a, Bounded b) => Bounded (Either a b)(Semigroup b) => Semigroup (Either a b)
#note'
#note
#isRight
#isLeft
#hush
#fromRight'
fromRight' :: forall a b. (Unit -> b) -> Either a b -> bSimilar to fromRight but for use in cases where the default value may be
expensive to compute. As PureScript is not lazy, the standard fromRight
has to evaluate the default value before returning the result,
whereas here the value is only computed when the Either is known
to be Left.
#fromRight
#fromLeft'
fromLeft' :: forall a b. (Unit -> a) -> Either a b -> aSimilar to fromLeft but for use in cases where the default value may be
expensive to compute. As PureScript is not lazy, the standard fromLeft
has to evaluate the default value before returning the result,
whereas here the value is only computed when the Either is known
to be Right.
#fromLeft
#either
either :: forall a b c. (a -> c) -> (b -> c) -> Either a b -> cTakes two functions and an Either value, if the value is a Left the
inner value is applied to the first function, if the value is a Right
the inner value is applied to the second function.
either f g (Left x) == f x
either f g (Right y) == g y
Re-exports from Data.Enum
#Cardinality
newtype Cardinality :: forall k. k -> Typenewtype Cardinality a
A type for the size of finite enumerations.
Constructors
Instances
Newtype (Cardinality a) _Eq (Cardinality a)Ord (Cardinality a)Show (Cardinality a)
#BoundedEnum
class (Bounded a, Enum a) <= BoundedEnum a whereType class for finite enumerations.
This should not be considered a part of a numeric hierarchy, as in Haskell.
Rather, this is a type class for small, ordered sum types with
statically-determined cardinality and the ability to easily compute
successor and predecessor elements like DayOfWeek.
Laws:
succ bottom >>= succ >>= succ ... succ [cardinality - 1 times] == toppred top >>= pred >>= pred ... pred [cardinality - 1 times] == bottomforall a > bottom: pred a >>= succ == Just aforall a < top: succ a >>= pred == Just aforall a > bottom: fromEnum <$> pred a = pred (fromEnum a)forall a < top: fromEnum <$> succ a = succ (fromEnum a)e1 `compare` e2 == fromEnum e1 `compare` fromEnum e2toEnum (fromEnum a) = Just a
Members
cardinality :: Cardinality atoEnum :: Int -> Maybe afromEnum :: a -> Int
Instances
#Enum
class (Ord a) <= Enum a whereType class for enumerations.
Laws:
- Successor:
all (a < _) (succ a) - Predecessor:
all (_ < a) (pred a) - Succ retracts pred:
pred >=> succ >=> pred = pred - Pred retracts succ:
succ >=> pred >=> succ = succ - Non-skipping succ:
b <= a || any (_ <= b) (succ a) - Non-skipping pred:
a <= b || any (b <= _) (pred a)
The retraction laws can intuitively be understood as saying that succ is
the opposite of pred; if you apply succ and then pred to something,
you should end up with what you started with (although of course this
doesn't apply if you tried to succ the last value in an enumeration and
therefore got Nothing out).
The non-skipping laws can intuitively be understood as saying that succ
shouldn't skip over any elements of your type. For example, without the
non-skipping laws, it would be permissible to write an Enum Int instance
where succ x = Just (x+2), and similarly pred x = Just (x-2).
Members
Instances
#upFromIncluding
upFromIncluding :: forall a u. Enum a => Unfoldable1 u => a -> u aProduces all successors of an Enum value, including the start value.
upFromIncluding bottom will return all values in an Enum.
#upFrom
upFrom :: forall a u. Enum a => Unfoldable u => a -> u aProduces all successors of an Enum value, excluding the start value.
#toEnumWithDefaults
toEnumWithDefaults :: forall a. BoundedEnum a => a -> a -> Int -> aLike toEnum but returns the first argument if x is less than
fromEnum bottom and the second argument if x is greater than
fromEnum top.
toEnumWithDefaults False True (-1) -- False
toEnumWithDefaults False True 0 -- False
toEnumWithDefaults False True 1 -- True
toEnumWithDefaults False True 2 -- True
#enumFromTo
enumFromTo :: forall a u. Enum a => Unfoldable1 u => a -> a -> u aReturns a contiguous sequence of elements from the first value to the second value (inclusive).
enumFromTo 0 3 = [0, 1, 2, 3]
enumFromTo 'c' 'a' = ['c', 'b', 'a']
The example shows Array return values, but the result can be any type
with an Unfoldable1 instance.
#enumFromThenTo
enumFromThenTo :: forall f a. Unfoldable f => Functor f => BoundedEnum a => a -> a -> a -> f aReturns a sequence of elements from the first value, taking steps according to the difference between the first and second value, up to (but not exceeding) the third value.
enumFromThenTo 0 2 6 = [0, 2, 4, 6]
enumFromThenTo 0 3 5 = [0, 3]
Note that there is no BoundedEnum instance for integers, they're just
being used here for illustrative purposes to help clarify the behaviour.
The example shows Array return values, but the result can be any type
with an Unfoldable1 instance.
#downFromIncluding
downFromIncluding :: forall a u. Enum a => Unfoldable1 u => a -> u aProduces all predecessors of an Enum value, including the start value.
downFromIncluding top will return all values in an Enum, in reverse
order.
#downFrom
downFrom :: forall a u. Enum a => Unfoldable u => a -> u aProduces all predecessors of an Enum value, excluding the start value.
#defaultToEnum
defaultToEnum :: forall a. Bounded a => Enum a => Int -> Maybe aProvides a default implementation for toEnum.
- Assumes
fromEnum bottom = 0. - Cannot be used in conjuction with
defaultSucc.
Runs in O(n) where n is fromEnum a.
#defaultSucc
defaultSucc :: forall a. (Int -> Maybe a) -> (a -> Int) -> a -> Maybe aProvides a default implementation for succ, given a function that maps
integers to values in the Enum, and a function that maps values in the
Enum back to integers. The integer mapping must agree in both directions
for this to implement a law-abiding succ.
If a BoundedEnum instance exists for a, the toEnum and fromEnum
functions can be used here:
succ = defaultSucc toEnum fromEnum
#defaultPred
defaultPred :: forall a. (Int -> Maybe a) -> (a -> Int) -> a -> Maybe aProvides a default implementation for pred, given a function that maps
integers to values in the Enum, and a function that maps values in the
Enum back to integers. The integer mapping must agree in both directions
for this to implement a law-abiding pred.
If a BoundedEnum instance exists for a, the toEnum and fromEnum
functions can be used here:
pred = defaultPred toEnum fromEnum
#defaultFromEnum
defaultFromEnum :: forall a. Enum a => a -> IntProvides a default implementation for fromEnum.
- Assumes
toEnum 0 = Just bottom. - Cannot be used in conjuction with
defaultPred.
Runs in O(n) where n is fromEnum a.
#defaultCardinality
defaultCardinality :: forall a. Bounded a => Enum a => Cardinality aProvides a default implementation for cardinality.
Runs in O(n) where n is fromEnum top
Re-exports from Data.Foldable
#Foldable
class Foldable :: (Type -> Type) -> Constraintclass Foldable f where
Foldable represents data structures which can be folded.
foldrfolds a structure from the rightfoldlfolds a structure from the leftfoldMapfolds a structure by accumulating values in aMonoid
Default implementations are provided by the following functions:
foldrDefaultfoldlDefaultfoldMapDefaultRfoldMapDefaultL
Note: some combinations of the default implementations are unsafe to use together - causing a non-terminating mutually recursive cycle. These combinations are documented per function.
Members
foldr :: forall a b. (a -> b -> b) -> b -> f a -> bfoldl :: forall a b. (b -> a -> b) -> b -> f a -> bfoldMap :: forall a m. Monoid m => (a -> m) -> f a -> m
Instances
Foldable ArrayFoldable MaybeFoldable FirstFoldable LastFoldable AdditiveFoldable DualFoldable DisjFoldable ConjFoldable MultiplicativeFoldable (Either a)Foldable (Tuple a)Foldable IdentityFoldable (Const a)(Foldable f, Foldable g) => Foldable (Product f g)(Foldable f, Foldable g) => Foldable (Coproduct f g)(Foldable f, Foldable g) => Foldable (Compose f g)(Foldable f) => Foldable (App f)
#surroundMap
surroundMap :: forall f a m. Foldable f => Semigroup m => m -> (a -> m) -> f a -> mfoldMap but with each element surrounded by some fixed value.
For example:
> surroundMap "*" show []
= "*"
> surroundMap "*" show [1]
= "*1*"
> surroundMap "*" show [1, 2]
= "*1*2*"
> surroundMap "*" show [1, 2, 3]
= "*1*2*3*"
#surround
#sum
#product
#or
or :: forall a f. Foldable f => HeytingAlgebra a => f a -> aThe disjunction of all the values in a data structure. When specialized
to Boolean, this function will test whether any of the values in a data
structure is true.
#oneOfMap
#oneOf
#null
#notElem
#minimumBy
#minimum
#maximumBy
#maximum
#lookup
#length
#intercalate
intercalate :: forall f m. Foldable f => Monoid m => m -> f m -> mFold a data structure, accumulating values in some Monoid,
combining adjacent elements using the specified separator.
For example:
> intercalate ", " ["Lorem", "ipsum", "dolor"]
= "Lorem, ipsum, dolor"
> intercalate "*" ["a", "b", "c"]
= "a*b*c"
> intercalate [1] [[2, 3], [4, 5], [6, 7]]
= [2, 3, 1, 4, 5, 1, 6, 7]
#indexr
#indexl
#foldrDefault
foldrDefault :: forall f a b. Foldable f => (a -> b -> b) -> b -> f a -> bA default implementation of foldr using foldMap.
Note: when defining a Foldable instance, this function is unsafe to use
in combination with foldMapDefaultR.
#foldlDefault
foldlDefault :: forall f a b. Foldable f => (b -> a -> b) -> b -> f a -> bA default implementation of foldl using foldMap.
Note: when defining a Foldable instance, this function is unsafe to use
in combination with foldMapDefaultL.
#foldMapDefaultR
foldMapDefaultR :: forall f a m. Foldable f => Monoid m => (a -> m) -> f a -> mA default implementation of foldMap using foldr.
Note: when defining a Foldable instance, this function is unsafe to use
in combination with foldrDefault.
#foldMapDefaultL
foldMapDefaultL :: forall f a m. Foldable f => Monoid m => (a -> m) -> f a -> mA default implementation of foldMap using foldl.
Note: when defining a Foldable instance, this function is unsafe to use
in combination with foldlDefault.
#foldM
#fold
#findMap
#find
#elem
#any
any :: forall a b f. Foldable f => HeytingAlgebra b => (a -> b) -> f a -> bany f is the same as or <<< map f; map a function over the structure,
and then get the disjunction of the results.
#and
and :: forall a f. Foldable f => HeytingAlgebra a => f a -> aThe conjunction of all the values in a data structure. When specialized
to Boolean, this function will test whether all of the values in a data
structure are true.
#all
all :: forall a b f. Foldable f => HeytingAlgebra b => (a -> b) -> f a -> ball f is the same as and <<< map f; map a function over the structure,
and then get the conjunction of the results.
Re-exports from Data.Generic.Rep
#Generic
class Generic a rep | a -> repThe Generic class asserts the existence of a type function from types
to their representations using the type constructors defined in this module.
Re-exports from Data.Log.Level
Re-exports from Data.Maybe
#Maybe
data Maybe aThe Maybe type is used to represent optional values and can be seen as
something like a type-safe null, where Nothing is null and Just x
is the non-null value x.
Constructors
Instances
Functor MaybeThe
Functorinstance allows functions to transform the contents of aJustwith the<$>operator:f <$> Just x == Just (f x)Nothingvalues are left untouched:f <$> Nothing == NothingApply MaybeThe
Applyinstance allows functions contained within aJustto transform a value contained within aJustusing theapplyoperator:Just f <*> Just x == Just (f x)Nothingvalues are left untouched:Just f <*> Nothing == Nothing Nothing <*> Just x == NothingCombining
Functor's<$>withApply's<*>can be used transform a pure function to takeMaybe-typed arguments sof :: a -> b -> cbecomesf :: Maybe a -> Maybe b -> Maybe c:f <$> Just x <*> Just y == Just (f x y)The
Nothing-preserving behaviour of both operators means the result of an expression like the above but where any one of the values isNothingmeans the whole result becomesNothingalso:f <$> Nothing <*> Just y == Nothing f <$> Just x <*> Nothing == Nothing f <$> Nothing <*> Nothing == NothingApplicative MaybeThe
Applicativeinstance enables lifting of values intoMaybewith thepurefunction:pure x :: Maybe _ == Just xCombining
Functor's<$>withApply's<*>andApplicative'spurecan be used to pass a mixture ofMaybeand non-Maybetyped values to a function that does not usually expect them, by usingpurefor any value that is not alreadyMaybetyped:f <$> Just x <*> pure y == Just (f x y)Even though
pure = Justit is recommended to usepurein situations like this as it allows the choice ofApplicativeto be changed later without having to go through and replaceJustwith a new constructor.Alt MaybeThe
Altinstance allows for a choice to be made between twoMaybevalues with the<|>operator, where the firstJustencountered is taken.Just x <|> Just y == Just x Nothing <|> Just y == Just y Nothing <|> Nothing == NothingPlus MaybeThe
Plusinstance provides a defaultMaybevalue:empty :: Maybe _ == NothingAlternative MaybeThe
Alternativeinstance guarantees that there are bothApplicativeandPlusinstances forMaybe.Bind MaybeThe
Bindinstance allows sequencing ofMaybevalues and functions that return aMaybeby using the>>=operator:Just x >>= f = f x Nothing >>= f = NothingMonad MaybeThe
Monadinstance guarantees that there are bothApplicativeandBindinstances forMaybe. This also enables thedosyntactic sugar:do x' <- x y' <- y pure (f x' y')Which is equivalent to:
x >>= (\x' -> y >>= (\y' -> pure (f x' y')))Which is equivalent to:
case x of Nothing -> Nothing Just x' -> case y of Nothing -> Nothing Just y' -> Just (f x' y')Extend MaybeThe
Extendinstance allows sequencing ofMaybevalues and functions that accept aMaybe aand return a non-Mayberesult using the<<=operator.f <<= Nothing = Nothing f <<= x = Just (f x)Invariant Maybe(Semigroup a) => Semigroup (Maybe a)The
Semigroupinstance enables use of the operator<>onMaybevalues whenever there is aSemigroupinstance for the type theMaybecontains. The exact behaviour of<>depends on the "inner"Semigroupinstance, but generally captures the notion of appending or combining things.Just x <> Just y = Just (x <> y) Just x <> Nothing = Just x Nothing <> Just y = Just y Nothing <> Nothing = Nothing(Semigroup a) => Monoid (Maybe a)(Semiring a) => Semiring (Maybe a)(Eq a) => Eq (Maybe a)The
Eqinstance allowsMaybevalues to be checked for equality with==and inequality with/=whenever there is anEqinstance for the type theMaybecontains.Eq1 Maybe(Ord a) => Ord (Maybe a)The
Ordinstance allowsMaybevalues to be compared withcompare,>,>=,<and<=whenever there is anOrdinstance for the type theMaybecontains.Nothingis considered to be less than anyJustvalue.Ord1 Maybe(Bounded a) => Bounded (Maybe a)(Show a) => Show (Maybe a)The
Showinstance allowsMaybevalues to be rendered as a string withshowwhenever there is anShowinstance for the type theMaybecontains.Generic (Maybe a) _
#optional
optional :: forall f a. Alt f => Applicative f => f a -> f (Maybe a)One or none.
optional empty = pure Nothing
The behaviour of optional (pure x) depends on whether the Alt instance
satisfy the left catch law (pure a <|> b = pure a).
Either e does:
optional (Right x) = Right (Just x)
But Array does not:
optional [x] = [Just x, Nothing]
#maybe'
maybe' :: forall a b. (Unit -> b) -> (a -> b) -> Maybe a -> bSimilar to maybe but for use in cases where the default value may be
expensive to compute. As PureScript is not lazy, the standard maybe has
to evaluate the default value before returning the result, whereas here
the value is only computed when the Maybe is known to be Nothing.
maybe' (\_ -> x) f Nothing == x
maybe' (\_ -> x) f (Just y) == f y
#maybe
maybe :: forall a b. b -> (a -> b) -> Maybe a -> bTakes a default value, a function, and a Maybe value. If the Maybe
value is Nothing the default value is returned, otherwise the function
is applied to the value inside the Just and the result is returned.
maybe x f Nothing == x
maybe x f (Just y) == f y
#isJust
#fromMaybe'
fromMaybe' :: forall a. (Unit -> a) -> Maybe a -> aSimilar to fromMaybe but for use in cases where the default value may be
expensive to compute. As PureScript is not lazy, the standard fromMaybe
has to evaluate the default value before returning the result, whereas here
the value is only computed when the Maybe is known to be Nothing.
fromMaybe' (\_ -> x) Nothing == x
fromMaybe' (\_ -> x) (Just y) == y
#fromMaybe
#fromJust
Re-exports from Data.Newtype
#Newtype
class (Coercible t a) <= Newtype t a | t -> aA type class for newtypes to enable convenient wrapping and unwrapping,
and the use of the other functions in this module.
The compiler can derive instances of Newtype automatically:
newtype EmailAddress = EmailAddress String
derive instance newtypeEmailAddress :: Newtype EmailAddress _
Note that deriving for Newtype instances requires that the type be
defined as newtype rather than data declaration (even if the data
structurally fits the rules of a newtype), and the use of a wildcard for
the wrapped type.
Instances
#over
over :: forall t a s b. Newtype t a => Newtype s b => (a -> t) -> (a -> b) -> t -> sLifts a function operate over newtypes. This can be used to lift a
function to manipulate the contents of a single newtype, somewhat like
map does for a Functor:
newtype Label = Label String
derive instance newtypeLabel :: Newtype Label _
toUpperLabel :: Label -> Label
toUpperLabel = over Label String.toUpper
But the result newtype is polymorphic, meaning the result can be returned as an alternative newtype:
newtype UppercaseLabel = UppercaseLabel String
derive instance newtypeUppercaseLabel :: Newtype UppercaseLabel _
toUpperLabel' :: Label -> UppercaseLabel
toUpperLabel' = over Label String.toUpper
Re-exports from Data.Show.Generic
#genericShow
genericShow :: forall a rep. Generic a rep => GenericShow rep => a -> StringA Generic implementation of the show member from the Show type class.
Re-exports from Data.Traversable
#Traversable
class Traversable :: (Type -> Type) -> Constraintclass (Functor t, Foldable t) <= Traversable t where
Traversable represents data structures which can be traversed,
accumulating results and effects in some Applicative functor.
traverseruns an action for every element in a data structure, and accumulates the results.sequenceruns the actions contained in a data structure, and accumulates the results.
import Data.Traversable
import Data.Maybe
import Data.Int (fromNumber)
sequence [Just 1, Just 2, Just 3] == Just [1,2,3]
sequence [Nothing, Just 2, Just 3] == Nothing
traverse fromNumber [1.0, 2.0, 3.0] == Just [1,2,3]
traverse fromNumber [1.5, 2.0, 3.0] == Nothing
traverse logShow [1,2,3]
-- prints:
1
2
3
traverse (\x -> [x, 0]) [1,2,3] == [[1,2,3],[1,2,0],[1,0,3],[1,0,0],[0,2,3],[0,2,0],[0,0,3],[0,0,0]]
The traverse and sequence functions should be compatible in the
following sense:
traverse f xs = sequence (f <$> xs)sequence = traverse identity
Traversable instances should also be compatible with the corresponding
Foldable instances, in the following sense:
foldMap f = runConst <<< traverse (Const <<< f)
Default implementations are provided by the following functions:
traverseDefaultsequenceDefault
Members
traverse :: forall a b m. Applicative m => (a -> m b) -> t a -> m (t b)sequence :: forall a m. Applicative m => t (m a) -> m (t a)
Instances
Traversable ArrayTraversable MaybeTraversable FirstTraversable LastTraversable AdditiveTraversable DualTraversable ConjTraversable DisjTraversable MultiplicativeTraversable (Either a)Traversable (Tuple a)Traversable IdentityTraversable (Const a)(Traversable f, Traversable g) => Traversable (Product f g)(Traversable f, Traversable g) => Traversable (Coproduct f g)(Traversable f, Traversable g) => Traversable (Compose f g)(Traversable f) => Traversable (App f)
#traverse_
traverse_ :: forall a b f m. Applicative m => Foldable f => (a -> m b) -> f a -> m UnitTraverse a data structure, performing some effects encoded by an
Applicative functor at each value, ignoring the final result.
For example:
traverse_ print [1, 2, 3]
#traverseDefault
traverseDefault :: forall t a b m. Traversable t => Applicative m => (a -> m b) -> t a -> m (t b)A default implementation of traverse using sequence and map.
#sequence_
sequence_ :: forall a f m. Applicative m => Foldable f => f (m a) -> m UnitPerform all of the effects in some data structure in the order
given by the Foldable instance, ignoring the final result.
For example:
sequence_ [ trace "Hello, ", trace " world!" ]
#sequenceDefault
sequenceDefault :: forall t a m. Traversable t => Applicative m => t (m a) -> m (t a)A default implementation of sequence using traverse.
#scanr
scanr :: forall a b f. Traversable f => (a -> b -> b) -> b -> f a -> f bFold a data structure from the right, keeping all intermediate results
instead of only the final result. Note that the initial value does not
appear in the result (unlike Haskell's Prelude.scanr).
scanr (+) 0 [1,2,3] = [6,5,3]
scanr (flip (-)) 10 [1,2,3] = [4,5,7]
#scanl
scanl :: forall a b f. Traversable f => (b -> a -> b) -> b -> f a -> f bFold a data structure from the left, keeping all intermediate results
instead of only the final result. Note that the initial value does not
appear in the result (unlike Haskell's Prelude.scanl).
scanl (+) 0 [1,2,3] = [1,3,6]
scanl (-) 10 [1,2,3] = [9,7,4]
#mapAccumR
mapAccumR :: forall a b s f. Traversable f => (s -> a -> Accum s b) -> s -> f a -> Accum s (f b)Fold a data structure from the right, keeping all intermediate results instead of only the final result.
Unlike scanr, mapAccumR allows the type of accumulator to differ
from the element type of the final data structure.
#mapAccumL
mapAccumL :: forall a b s f. Traversable f => (s -> a -> Accum s b) -> s -> f a -> Accum s (f b)Fold a data structure from the left, keeping all intermediate results instead of only the final result.
Unlike scanl, mapAccumL allows the type of accumulator to differ
from the element type of the final data structure.
#for_
for_ :: forall a b f m. Applicative m => Foldable f => f a -> (a -> m b) -> m UnitA version of traverse_ with its arguments flipped.
This can be useful when running an action written using do notation for every element in a data structure:
For example:
for_ [1, 2, 3] \n -> do
print n
trace "squared is"
print (n * n)
#for
for :: forall a b m t. Applicative m => Traversable t => t a -> (a -> m b) -> m (t b)A version of traverse with its arguments flipped.
This can be useful when running an action written using do notation for every element in a data structure:
For example:
for [1, 2, 3] \n -> do
print n
return (n * n)
Re-exports from Data.Tuple
#Tuple
data Tuple a bA simple product type for wrapping a pair of component values.
Constructors
Tuple a b
Instances
(Show a, Show b) => Show (Tuple a b)Allows
Tuples to be rendered as a string withshowwhenever there areShowinstances for both component types.(Eq a, Eq b) => Eq (Tuple a b)Allows
Tuples to be checked for equality with==and/=whenever there areEqinstances for both component types.(Eq a) => Eq1 (Tuple a)(Ord a, Ord b) => Ord (Tuple a b)Allows
Tuples to be compared withcompare,>,>=,<and<=whenever there areOrdinstances for both component types. To obtain the result, thefsts arecompared, and if they areEQual, thesnds arecompared.(Ord a) => Ord1 (Tuple a)(Bounded a, Bounded b) => Bounded (Tuple a b)Semigroupoid Tuple(Semigroup a, Semigroup b) => Semigroup (Tuple a b)The
Semigroupinstance enables use of the associative operator<>onTuples whenever there areSemigroupinstances for the component types. The<>operator is applied pairwise, so:(Tuple a1 b1) <> (Tuple a2 b2) = Tuple (a1 <> a2) (b1 <> b2)(Monoid a, Monoid b) => Monoid (Tuple a b)(Semiring a, Semiring b) => Semiring (Tuple a b)(Ring a, Ring b) => Ring (Tuple a b)(CommutativeRing a, CommutativeRing b) => CommutativeRing (Tuple a b)(HeytingAlgebra a, HeytingAlgebra b) => HeytingAlgebra (Tuple a b)(BooleanAlgebra a, BooleanAlgebra b) => BooleanAlgebra (Tuple a b)Functor (Tuple a)The
Functorinstance allows functions to transform the contents of aTuplewith the<$>operator, applying the function to the second component, so:f <$> (Tuple x y) = Tuple x (f y)Generic (Tuple a b) _Invariant (Tuple a)(Semigroup a) => Apply (Tuple a)The
Applyinstance allows functions to transform the contents of aTuplewith the<*>operator whenever there is aSemigroupinstance for thefstcomponent, so:(Tuple a1 f) <*> (Tuple a2 x) == Tuple (a1 <> a2) (f x)(Monoid a) => Applicative (Tuple a)(Semigroup a) => Bind (Tuple a)(Monoid a) => Monad (Tuple a)Extend (Tuple a)Comonad (Tuple a)(Lazy a, Lazy b) => Lazy (Tuple a b)
#uncurry
#swap
#curry
Re-exports from Data.Tuple.Nested
#uncurry9
#uncurry8
#uncurry7
#uncurry6
#uncurry5
#uncurry4
#uncurry3
#uncurry2
#uncurry10
#uncurry1
#tuple9
#tuple8
#tuple7
#tuple6
#tuple5
#tuple4
#tuple3
#tuple10
#over9
#over8
#over7
#over6
#over5
#over4
#over3
#over2
#over10
#over1
#get9
#get8
#get7
#get6
#get5
#get10
#curry9
#curry8
#curry7
#curry6
#curry5
#curry4
#curry3
#curry2
#curry10
#curry1
#(/\)
Operator alias for Data.Tuple.Tuple (right-associative / precedence 6)
Shorthand for constructing n-tuples as nested pairs.
a /\ b /\ c /\ d /\ unit becomes Tuple a (Tuple b (Tuple c (Tuple d unit)))
#type (/\)
Operator alias for Data.Tuple.Tuple (right-associative / precedence 6)
Shorthand for constructing n-tuple types as nested pairs.
forall a b c d. a /\ b /\ c /\ d /\ Unit becomes
forall a b c d. Tuple a (Tuple b (Tuple c (Tuple d Unit)))
Re-exports from Effect
#Effect
data Effect t0A native effect. The type parameter denotes the return type of running the
effect, that is, an Effect Int is a possibly-effectful computation which
eventually produces a value of the type Int when it finishes.
Instances
Functor EffectApply EffectApplicative EffectBind EffectMonad Effect(Semigroup a) => Semigroup (Effect a)The
Semigroupinstance for effects allows you to run two effects, one after the other, and then combine their results using the result type'sSemigroupinstance.(Monoid a) => Monoid (Effect a)If you have a
Monoid ainstance, thenmempty :: Effect ais defined aspure mempty.
Re-exports from Effect.Aff
#Aff
data Aff t0An Aff a is an asynchronous computation with effects. The
computation may either error with an exception, or produce a result of
type a. Aff effects are assembled from primitive Effect effects using
makeAff or liftEffect.
Instances
Functor AffApply AffApplicative AffBind AffMonad Aff(Semigroup a) => Semigroup (Aff a)(Monoid a) => Monoid (Aff a)Alt AffPlus AffMonadRec AffThis instance is provided for compatibility.
Affis always stack-safe within a given fiber. This instance will just result in unnecessary bind overhead.MonadThrow Error AffMonadError Error AffMonadEffect AffLazy (Aff a)MonadST Global AffParallel ParAff Aff
Re-exports from Effect.Aff.Class
Re-exports from Effect.Class
#liftEffect
liftEffect :: forall m a. MonadEffect m => Effect a -> m aRe-exports from Effect.Class.Console
#log
log :: forall m. MonadEffect m => String -> m UnitRe-exports from Prelude
#Void
newtype VoidAn uninhabited data type. In other words, one can never create
a runtime value of type Void because no such value exists.
Void is useful to eliminate the possibility of a value being created.
For example, a value of type Either Void Boolean can never have
a Left value created in PureScript.
This should not be confused with the keyword void that commonly appears in
C-family languages, such as Java:
public class Foo {
void doSomething() { System.out.println("hello world!"); }
}
In PureScript, one often uses Unit to achieve similar effects as
the void of C-family languages above.
#Unit
data UnitThe Unit type has a single inhabitant, called unit. It represents
values with no computational content.
Unit is often used, wrapped in a monadic type constructor, as the
return type of a computation where only the effects are important.
When returning a value of type Unit from an FFI function, it is
recommended to use undefined, or not return a value at all.
#Ordering
data OrderingThe Ordering data type represents the three possible outcomes of
comparing two values:
LT - The first value is less than the second.
GT - The first value is greater than the second.
EQ - The first value is equal to the second.
Constructors
Instances
#Applicative
class Applicative :: (Type -> Type) -> Constraintclass (Apply f) <= Applicative f where
The Applicative type class extends the Apply type class
with a pure function, which can be used to create values of type f a
from values of type a.
Where Apply provides the ability to lift functions of two or
more arguments to functions whose arguments are wrapped using f, and
Functor provides the ability to lift functions of one
argument, pure can be seen as the function which lifts functions of
zero arguments. That is, Applicative functors support a lifting
operation for any number of function arguments.
Instances must satisfy the following laws in addition to the Apply
laws:
- Identity:
(pure identity) <*> v = v - Composition:
pure (<<<) <*> f <*> g <*> h = f <*> (g <*> h) - Homomorphism:
(pure f) <*> (pure x) = pure (f x) - Interchange:
u <*> (pure y) = (pure (_ $ y)) <*> u
Members
pure :: forall a. a -> f a
Instances
#Apply
class Apply :: (Type -> Type) -> Constraintclass (Functor f) <= Apply f where
The Apply class provides the (<*>) which is used to apply a function
to an argument under a type constructor.
Apply can be used to lift functions of two or more arguments to work on
values wrapped with the type constructor f. It might also be understood
in terms of the lift2 function:
lift2 :: forall f a b c. Apply f => (a -> b -> c) -> f a -> f b -> f c
lift2 f a b = f <$> a <*> b
(<*>) is recovered from lift2 as lift2 ($). That is, (<*>) lifts
the function application operator ($) to arguments wrapped with the
type constructor f.
Put differently...
foo =
functionTakingNArguments <$> computationProducingArg1
<*> computationProducingArg2
<*> ...
<*> computationProducingArgN
Instances must satisfy the following law in addition to the Functor
laws:
- Associative composition:
(<<<) <$> f <*> g <*> h = f <*> (g <*> h)
Formally, Apply represents a strong lax semi-monoidal endofunctor.
Members
apply :: forall a b. f (a -> b) -> f a -> f b
Instances
#Bind
class Bind :: (Type -> Type) -> Constraintclass (Apply m) <= Bind m where
The Bind type class extends the Apply type class with a
"bind" operation (>>=) which composes computations in sequence, using
the return value of one computation to determine the next computation.
The >>= operator can also be expressed using do notation, as follows:
x >>= f = do y <- x
f y
where the function argument of f is given the name y.
Instances must satisfy the following laws in addition to the Apply
laws:
- Associativity:
(x >>= f) >>= g = x >>= (\k -> f k >>= g) - Apply Superclass:
apply f x = f >>= \f’ -> map f’ x
Associativity tells us that we can regroup operations which use do
notation so that we can unambiguously write, for example:
do x <- m1
y <- m2 x
m3 x y
Members
bind :: forall a b. m a -> (a -> m b) -> m b
Instances
Bind (Function r)Bind ArrayThe
bind/>>=function forArrayworks by applying a function to each element in the array, and flattening the results into a single, new array.Array's
bind/>>=works like a nested for loop. Eachbindadds another level of nesting in the loop. For example:foo :: Array String foo = ["a", "b"] >>= \eachElementInArray1 -> ["c", "d"] >>= \eachElementInArray2 pure (eachElementInArray1 <> eachElementInArray2) -- In other words... foo -- ... is the same as... [ ("a" <> "c"), ("a" <> "d"), ("b" <> "c"), ("b" <> "d") ] -- which simplifies to... [ "ac", "ad", "bc", "bd" ]Bind Proxy
#BooleanAlgebra
class (HeytingAlgebra a) <= BooleanAlgebra a The BooleanAlgebra type class represents types that behave like boolean
values.
Instances should satisfy the following laws in addition to the
HeytingAlgebra law:
- Excluded middle:
a || not a = tt
Instances
BooleanAlgebra BooleanBooleanAlgebra Unit(BooleanAlgebra b) => BooleanAlgebra (a -> b)(RowToList row list, BooleanAlgebraRecord list row row) => BooleanAlgebra (Record row)BooleanAlgebra (Proxy a)
#Bounded
class (Ord a) <= Bounded a whereThe Bounded type class represents totally ordered types that have an
upper and lower boundary.
Instances should satisfy the following law in addition to the Ord laws:
- Bounded:
bottom <= a <= top
Members
Instances
Bounded BooleanBounded IntThe
BoundedIntinstance hastop :: Intequal to 2^31 - 1, andbottom :: Intequal to -2^31, since these are the largest and smallest integers representable by twos-complement 32-bit integers, respectively.Bounded CharCharacters fall within the Unicode range.
Bounded OrderingBounded UnitBounded NumberBounded (Proxy a)(RowToList row list, BoundedRecord list row row) => Bounded (Record row)
#Category
class Category :: forall k. (k -> k -> Type) -> Constraintclass (Semigroupoid a) <= Category a where
Categorys consist of objects and composable morphisms between them, and
as such are Semigroupoids, but unlike semigroupoids
must have an identity element.
Instances must satisfy the following law in addition to the
Semigroupoid law:
- Identity:
identity <<< p = p <<< identity = p
Members
identity :: forall t. a t t
Instances
#CommutativeRing
class (Ring a) <= CommutativeRing a The CommutativeRing class is for rings where multiplication is
commutative.
Instances must satisfy the following law in addition to the Ring
laws:
- Commutative multiplication:
a * b = b * a
Instances
CommutativeRing IntCommutativeRing NumberCommutativeRing Unit(CommutativeRing b) => CommutativeRing (a -> b)(RowToList row list, CommutativeRingRecord list row row) => CommutativeRing (Record row)CommutativeRing (Proxy a)
#Discard
#DivisionRing
class (Ring a) <= DivisionRing a whereThe DivisionRing class is for non-zero rings in which every non-zero
element has a multiplicative inverse. Division rings are sometimes also
called skew fields.
Instances must satisfy the following laws in addition to the Ring laws:
- Non-zero ring:
one /= zero - Non-zero multiplicative inverse:
recip a * a = a * recip a = onefor all non-zeroa
The result of recip zero is left undefined; individual instances may
choose how to handle this case.
If a type has both DivisionRing and CommutativeRing instances, then
it is a field and should have a Field instance.
Members
recip :: a -> a
Instances
#Eq
class Eq a whereThe Eq type class represents types which support decidable equality.
Eq instances should satisfy the following laws:
- Reflexivity:
x == x = true - Symmetry:
x == y = y == x - Transitivity: if
x == yandy == zthenx == z
Note: The Number type is not an entirely law abiding member of this
class due to the presence of NaN, since NaN /= NaN. Additionally,
computing with Number can result in a loss of precision, so sometimes
values that should be equivalent are not.
Members
Instances
#EuclideanRing
class (CommutativeRing a) <= EuclideanRing a whereThe EuclideanRing class is for commutative rings that support division.
The mathematical structure this class is based on is sometimes also called
a Euclidean domain.
Instances must satisfy the following laws in addition to the Ring
laws:
- Integral domain:
one /= zero, and ifaandbare both nonzero then so is their producta * b - Euclidean function
degree:- Nonnegativity: For all nonzero
a,degree a >= 0 - Quotient/remainder: For all
aandb, wherebis nonzero, letq = a / bandr = a `mod` b; thena = q*b + r, and also eitherr = zeroordegree r < degree b
- Nonnegativity: For all nonzero
- Submultiplicative euclidean function:
- For all nonzero
aandb,degree a <= degree (a * b)
- For all nonzero
The behaviour of division by zero is unconstrained by these laws,
meaning that individual instances are free to choose how to behave in this
case. Similarly, there are no restrictions on what the result of
degree zero is; it doesn't make sense to ask for degree zero in the
same way that it doesn't make sense to divide by zero, so again,
individual instances may choose how to handle this case.
For any EuclideanRing which is also a Field, one valid choice
for degree is simply const 1. In fact, unless there's a specific
reason not to, Field types should normally use this definition of
degree.
The EuclideanRing Int instance is one of the most commonly used
EuclideanRing instances and deserves a little more discussion. In
particular, there are a few different sensible law-abiding implementations
to choose from, with slightly different behaviour in the presence of
negative dividends or divisors. The most common definitions are "truncating"
division, where the result of a / b is rounded towards 0, and "Knuthian"
or "flooring" division, where the result of a / b is rounded towards
negative infinity. A slightly less common, but arguably more useful, option
is "Euclidean" division, which is defined so as to ensure that a `mod` b
is always nonnegative. With Euclidean division, a / b rounds towards
negative infinity if the divisor is positive, and towards positive infinity
if the divisor is negative. Note that all three definitions are identical if
we restrict our attention to nonnegative dividends and divisors.
In versions 1.x, 2.x, and 3.x of the Prelude, the EuclideanRing Int
instance used truncating division. As of 4.x, the EuclideanRing Int
instance uses Euclidean division. Additional functions quot and rem are
supplied if truncating division is desired.
Members
Instances
#Field
class (EuclideanRing a, DivisionRing a) <= Field a The Field class is for types that are (commutative) fields.
Mathematically, a field is a ring which is commutative and in which every
nonzero element has a multiplicative inverse; these conditions correspond
to the CommutativeRing and DivisionRing classes in PureScript
respectively. However, the Field class has EuclideanRing and
DivisionRing as superclasses, which seems like a stronger requirement
(since CommutativeRing is a superclass of EuclideanRing). In fact, it
is not stronger, since any type which has law-abiding CommutativeRing
and DivisionRing instances permits exactly one law-abiding
EuclideanRing instance. We use a EuclideanRing superclass here in
order to ensure that a Field constraint on a function permits you to use
div on that type, since div is a member of EuclideanRing.
This class has no laws or members of its own; it exists as a convenience, so a single constraint can be used when field-like behaviour is expected.
This module also defines a single Field instance for any type which has
both EuclideanRing and DivisionRing instances. Any other instance
would overlap with this instance, so no other Field instances should be
defined in libraries. Instead, simply define EuclideanRing and
DivisionRing instances, and this will permit your type to be used with a
Field constraint.
Instances
(EuclideanRing a, DivisionRing a) => Field a
#Functor
class Functor :: (Type -> Type) -> Constraintclass Functor f where
A Functor is a type constructor which supports a mapping operation
map.
map can be used to turn functions a -> b into functions
f a -> f b whose argument and return types use the type constructor f
to represent some computational context.
Instances must satisfy the following laws:
- Identity:
map identity = identity - Composition:
map (f <<< g) = map f <<< map g
Members
map :: forall a b. (a -> b) -> f a -> f b
Instances
#HeytingAlgebra
class HeytingAlgebra a whereThe HeytingAlgebra type class represents types that are bounded lattices with
an implication operator such that the following laws hold:
- Associativity:
a || (b || c) = (a || b) || ca && (b && c) = (a && b) && c
- Commutativity:
a || b = b || aa && b = b && a
- Absorption:
a || (a && b) = aa && (a || b) = a
- Idempotent:
a || a = aa && a = a
- Identity:
a || ff = aa && tt = a
- Implication:
a `implies` a = tta && (a `implies` b) = a && bb && (a `implies` b) = ba `implies` (b && c) = (a `implies` b) && (a `implies` c)
- Complemented:
not a = a `implies` ff
Members
Instances
HeytingAlgebra BooleanHeytingAlgebra Unit(HeytingAlgebra b) => HeytingAlgebra (a -> b)HeytingAlgebra (Proxy a)(RowToList row list, HeytingAlgebraRecord list row row) => HeytingAlgebra (Record row)
#Monad
class Monad :: (Type -> Type) -> Constraintclass (Applicative m, Bind m) <= Monad m
The Monad type class combines the operations of the Bind and
Applicative type classes. Therefore, Monad instances represent type
constructors which support sequential composition, and also lifting of
functions of arbitrary arity.
Instances must satisfy the following laws in addition to the
Applicative and Bind laws:
- Left Identity:
pure x >>= f = f x - Right Identity:
x >>= pure = x
Instances
#Monoid
class (Semigroup m) <= Monoid m whereA Monoid is a Semigroup with a value mempty, which is both a
left and right unit for the associative operation <>:
- Left unit:
(mempty <> x) = x - Right unit:
(x <> mempty) = x
Monoids are commonly used as the result of fold operations, where
<> is used to combine individual results, and mempty gives the result
of folding an empty collection of elements.
Newtypes for Monoid
Some types (e.g. Int, Boolean) can implement multiple law-abiding
instances for Monoid. Let's use Int as an example
<>could be+andmemptycould be0<>could be*andmemptycould be1.
To clarify these ambiguous situations, one should use the newtypes
defined in Data.Monoid.<NewtypeName> modules.
In the above ambiguous situation, we could use Additive
for the first situation or Multiplicative for the second one.
Members
mempty :: m
Instances
#Ord
class (Eq a) <= Ord a whereThe Ord type class represents types which support comparisons with a
total order.
Ord instances should satisfy the laws of total orderings:
- Reflexivity:
a <= a - Antisymmetry: if
a <= bandb <= athena == b - Transitivity: if
a <= bandb <= cthena <= c
Note: The Number type is not an entirely law abiding member of this
class due to the presence of NaN, since NaN <= NaN evaluates to false
Members
Instances
#Ring
class (Semiring a) <= Ring a whereThe Ring class is for types that support addition, multiplication,
and subtraction operations.
Instances must satisfy the following laws in addition to the Semiring
laws:
- Additive inverse:
a - a = zero - Compatibility of
subandnegate:a - b = a + (zero - b)
Members
sub :: a -> a -> a
Instances
#Semigroup
class Semigroup a whereThe Semigroup type class identifies an associative operation on a type.
Instances are required to satisfy the following law:
- Associativity:
(x <> y) <> z = x <> (y <> z)
One example of a Semigroup is String, with (<>) defined as string
concatenation. Another example is List a, with (<>) defined as
list concatenation.
Newtypes for Semigroup
There are two other ways to implement an instance for this type class regardless of which type is used. These instances can be used by wrapping the values in one of the two newtypes below:
First- Use the first argument every time:append first _ = first.Last- Use the last argument every time:append _ last = last.
Members
append :: a -> a -> a
Instances
#Semigroupoid
class Semigroupoid :: forall k. (k -> k -> Type) -> Constraintclass Semigroupoid a where
A Semigroupoid is similar to a Category but does not
require an identity element identity, just composable morphisms.
Semigroupoids must satisfy the following law:
- Associativity:
p <<< (q <<< r) = (p <<< q) <<< r
One example of a Semigroupoid is the function type constructor (->),
with (<<<) defined as function composition.
Members
compose :: forall b c d. a c d -> a b c -> a b d
Instances
#Semiring
class Semiring a whereThe Semiring class is for types that support an addition and
multiplication operation.
Instances must satisfy the following laws:
- Commutative monoid under addition:
- Associativity:
(a + b) + c = a + (b + c) - Identity:
zero + a = a + zero = a - Commutative:
a + b = b + a
- Associativity:
- Monoid under multiplication:
- Associativity:
(a * b) * c = a * (b * c) - Identity:
one * a = a * one = a
- Associativity:
- Multiplication distributes over addition:
- Left distributivity:
a * (b + c) = (a * b) + (a * c) - Right distributivity:
(a + b) * c = (a * c) + (b * c)
- Left distributivity:
- Annihilation:
zero * a = a * zero = zero
Note: The Number and Int types are not fully law abiding
members of this class hierarchy due to the potential for arithmetic
overflows, and in the case of Number, the presence of NaN and
Infinity values. The behaviour is unspecified in these cases.
Members
Instances
#Show
class Show a whereThe Show type class represents those types which can be converted into
a human-readable String representation.
While not required, it is recommended that for any expression x, the
string show x be executable PureScript code which evaluates to the same
value as the expression x.
Members
Instances
#whenM
#when
when :: forall m. Applicative m => Boolean -> m Unit -> m UnitPerform an applicative action when a condition is true.
#void
void :: forall f a. Functor f => f a -> f UnitThe void function is used to ignore the type wrapped by a
Functor, replacing it with Unit and keeping only the type
information provided by the type constructor itself.
void is often useful when using do notation to change the return type
of a monadic computation:
main = forE 1 10 \n -> void do
print n
print (n * n)
#unlessM
#unless
unless :: forall m. Applicative m => Boolean -> m Unit -> m UnitPerform an applicative action unless a condition is true.
#otherwise
#notEq
#min
#max
#liftM1
liftM1 :: forall m a b. Monad m => (a -> b) -> m a -> m bliftM1 provides a default implementation of (<$>) for any
Monad, without using (<$>) as provided by the
Functor-Monad superclass relationship.
liftM1 can therefore be used to write Functor instances
as follows:
instance functorF :: Functor F where
map = liftM1
#liftA1
liftA1 :: forall f a b. Applicative f => (a -> b) -> f a -> f bliftA1 provides a default implementation of (<$>) for any
Applicative functor, without using (<$>) as provided
by the Functor-Applicative superclass
relationship.
liftA1 can therefore be used to write Functor instances
as follows:
instance functorF :: Functor F where
map = liftA1
#lcm
lcm :: forall a. Eq a => EuclideanRing a => a -> a -> aThe least common multiple of two values.
#join
#ifM
#gcd
gcd :: forall a. Eq a => EuclideanRing a => a -> a -> aThe greatest common divisor of two values.
#flip
flip :: forall a b c. (a -> b -> c) -> b -> a -> cGiven a function that takes two arguments, applies the arguments to the function in a swapped order.
flip append "1" "2" == append "2" "1" == "21"
const 1 "two" == 1
flip const 1 "two" == const "two" 1 == "two"
#flap
flap :: forall f a b. Functor f => f (a -> b) -> a -> f bApply a value in a computational context to a value in no context.
Generalizes flip.
longEnough :: String -> Bool
hasSymbol :: String -> Bool
hasDigit :: String -> Bool
password :: String
validate :: String -> Array Bool
validate = flap [longEnough, hasSymbol, hasDigit]
flap (-) 3 4 == 1
threeve <$> Just 1 <@> 'a' <*> Just true == Just (threeve 1 'a' true)
#const
const :: forall a b. a -> b -> aReturns its first argument and ignores its second.
const 1 "hello" = 1
It can also be thought of as creating a function that ignores its argument:
const 1 = \_ -> 1
#comparing
#clamp
#between
#ap
#absurd
#(||)
Operator alias for Data.HeytingAlgebra.disj (right-associative / precedence 2)
#(>>>)
Operator alias for Control.Semigroupoid.composeFlipped (right-associative / precedence 9)
#(>>=)
Operator alias for Control.Bind.bind (left-associative / precedence 1)
#(>=>)
Operator alias for Control.Bind.composeKleisli (right-associative / precedence 1)
#(>=)
Operator alias for Data.Ord.greaterThanOrEq (left-associative / precedence 4)
#(>)
Operator alias for Data.Ord.greaterThan (left-associative / precedence 4)
#(==)
Operator alias for Data.Eq.eq (non-associative / precedence 4)
#(=<<)
Operator alias for Control.Bind.bindFlipped (right-associative / precedence 1)
#(<@>)
Operator alias for Data.Functor.flap (left-associative / precedence 4)
#(<>)
Operator alias for Data.Semigroup.append (right-associative / precedence 5)
#(<=<)
Operator alias for Control.Bind.composeKleisliFlipped (right-associative / precedence 1)
#(<=)
Operator alias for Data.Ord.lessThanOrEq (left-associative / precedence 4)
#(<<<)
Operator alias for Control.Semigroupoid.compose (right-associative / precedence 9)
#(<*>)
Operator alias for Control.Apply.apply (left-associative / precedence 4)
#(<*)
Operator alias for Control.Apply.applyFirst (left-associative / precedence 4)
#(<$>)
Operator alias for Data.Functor.map (left-associative / precedence 4)
#(<$)
Operator alias for Data.Functor.voidRight (left-associative / precedence 4)
#(<#>)
Operator alias for Data.Functor.mapFlipped (left-associative / precedence 1)
#(<)
Operator alias for Data.Ord.lessThan (left-associative / precedence 4)
#(/=)
Operator alias for Data.Eq.notEq (non-associative / precedence 4)
#(/)
Operator alias for Data.EuclideanRing.div (left-associative / precedence 7)
#(-)
Operator alias for Data.Ring.sub (left-associative / precedence 6)
#(+)
Operator alias for Data.Semiring.add (left-associative / precedence 6)
#(*>)
Operator alias for Control.Apply.applySecond (left-associative / precedence 4)
#(*)
Operator alias for Data.Semiring.mul (left-associative / precedence 7)
#(&&)
Operator alias for Data.HeytingAlgebra.conj (right-associative / precedence 3)
#($>)
Operator alias for Data.Functor.voidLeft (left-associative / precedence 4)
#($)
Operator alias for Data.Function.apply (right-associative / precedence 0)
Applies a function to an argument: the reverse of (#).
length $ groupBy productCategory $ filter isInStock $ products
is equivalent to:
length (groupBy productCategory (filter isInStock products))
Or another alternative equivalent, applying chain of composed functions to a value:
length <<< groupBy productCategory <<< filter isInStock $ products
#(#)
Operator alias for Data.Function.applyFlipped (left-associative / precedence 1)
Applies an argument to a function: the reverse of ($).
products # filter isInStock # groupBy productCategory # length
is equivalent to:
length (groupBy productCategory (filter isInStock products))
Or another alternative equivalent, applying a value to a chain of composed functions:
products # filter isInStock >>> groupBy productCategory >>> length
#type (~>)
Operator alias for Data.NaturalTransformation.NaturalTransformation (right-associative / precedence 4)
Modules
- Aeson
- Affjax
- Affjax.RequestBody
- Affjax.RequestHeader
- Affjax.ResponseFormat
- Affjax.ResponseHeader
- Affjax.StatusCode
- Ansi.Codes
- Ansi.Output
- Cardano.AsCbor
- Cardano.Blockfrost
- Cardano.Blockfrost.BlockfrostBackend
- Cardano.Blockfrost.BlockfrostProtocolParameters
- Cardano.Blockfrost.Helpers
- Cardano.Blockfrost.Provider
- Cardano.Blockfrost.Service
- Cardano.Collateral.FakeOutput
- Cardano.Collateral.Select
- Cardano.Collateral.UtxoMinAda
- Cardano.Data.Lite
- Cardano.Data.Lite.Internal
- Cardano.FromData
- Cardano.FromMetadata
- Cardano.Kupmios
- Cardano.Kupmios.Helpers
- Cardano.Kupmios.KupmiosM
- Cardano.Kupmios.KupmiosM.HttpUtils
- Cardano.Kupmios.Kupo
- Cardano.Kupmios.Logging
- Cardano.Kupmios.Ogmios
- Cardano.Kupmios.Ogmios.CurrentEpoch
- Cardano.Kupmios.Ogmios.EraSummaries
- Cardano.Kupmios.Ogmios.Helpers
- Cardano.Kupmios.Ogmios.Pools
- Cardano.Kupmios.Ogmios.Types
- Cardano.Kupmios.Provider
- Cardano.MessageSigning
- Cardano.Ogmios.Internal.Mempool
- Cardano.Ogmios.Internal.Mempool.Dispatcher
- Cardano.Ogmios.Internal.Mempool.JsWebSocket
- Cardano.Ogmios.Internal.Mempool.JsonRpc2
- Cardano.Ogmios.Mempool
- Cardano.Plutus.ApplyArgs
- Cardano.Plutus.DataSchema
- Cardano.Plutus.DataSchema.Indexed
- Cardano.Plutus.DataSchema.Nat
- Cardano.Plutus.DataSchema.RowList
- Cardano.Plutus.Types.Address
- Cardano.Plutus.Types.Credential
- Cardano.Plutus.Types.CurrencySymbol
- Cardano.Plutus.Types.Map
- Cardano.Plutus.Types.MintingPolicyHash
- Cardano.Plutus.Types.OutputDatum
- Cardano.Plutus.Types.PaymentPubKeyHash
- Cardano.Plutus.Types.PubKeyHash
- Cardano.Plutus.Types.StakePubKeyHash
- Cardano.Plutus.Types.StakingCredential
- Cardano.Plutus.Types.TokenName
- Cardano.Plutus.Types.TransactionOutput
- Cardano.Plutus.Types.TransactionOutputWithRefScript
- Cardano.Plutus.Types.TransactionUnspentOutput
- Cardano.Plutus.Types.UtxoMap
- Cardano.Plutus.Types.Validator
- Cardano.Plutus.Types.ValidatorHash
- Cardano.Plutus.Types.Value
- Cardano.Provider
- Cardano.Provider.Affjax
- Cardano.Provider.Error
- Cardano.Provider.OgmiosTypes
- Cardano.Provider.ServerConfig
- Cardano.Provider.Type
- Cardano.ToData
- Cardano.ToMetadata
- Cardano.Transaction.Balancer
- Cardano.Transaction.Balancer.CoinSelection
- Cardano.Transaction.Balancer.CoinSelection.UtxoIndex
- Cardano.Transaction.Balancer.Collateral
- Cardano.Transaction.Balancer.Collateral.Select
- Cardano.Transaction.Balancer.Constraints
- Cardano.Transaction.Balancer.Error
- Cardano.Transaction.Balancer.ExUnitsAndMinFee
- Cardano.Transaction.Balancer.FakeOutput
- Cardano.Transaction.Balancer.Helpers
- Cardano.Transaction.Balancer.MinFee
- Cardano.Transaction.Balancer.Partition
- Cardano.Transaction.Balancer.Types
- Cardano.Transaction.Balancer.Types.ProtocolParameters
- Cardano.Transaction.Balancer.Types.Val
- Cardano.Transaction.Balancer.UtxoMinAda
- Cardano.Transaction.Builder
- Cardano.Transaction.Edit
- Cardano.Types
- Cardano.Types.Address
- Cardano.Types.Anchor
- Cardano.Types.AnchorDataHash
- Cardano.Types.Asset
- Cardano.Types.AssetClass
- Cardano.Types.AssetName
- Cardano.Types.AuxiliaryData
- Cardano.Types.AuxiliaryDataHash
- Cardano.Types.Base58String
- Cardano.Types.BaseAddress
- Cardano.Types.Bech32String
- Cardano.Types.BigInt
- Cardano.Types.BigNum
- Cardano.Types.BootstrapWitness
- Cardano.Types.ByronAddress
- Cardano.Types.CborBytes
- Cardano.Types.Certificate
- Cardano.Types.Chain
- Cardano.Types.Coin
- Cardano.Types.Committee
- Cardano.Types.Constitution
- Cardano.Types.CostModel
- Cardano.Types.Credential
- Cardano.Types.DRep
- Cardano.Types.DRepVotingThresholds
- Cardano.Types.DataHash
- Cardano.Types.DelegationsAndRewards
- Cardano.Types.Ed25519KeyHash
- Cardano.Types.Ed25519Signature
- Cardano.Types.EnterpriseAddress
- Cardano.Types.Epoch
- Cardano.Types.EraSummaries
- Cardano.Types.ExUnitPrices
- Cardano.Types.ExUnits
- Cardano.Types.GeneralTransactionMetadata
- Cardano.Types.GenesisHash
- Cardano.Types.GovernanceAction
- Cardano.Types.GovernanceActionId
- Cardano.Types.HardForkInitiationAction
- Cardano.Types.Int
- Cardano.Types.Internal.Helpers
- Cardano.Types.Ipv4
- Cardano.Types.Ipv6
- Cardano.Types.Language
- Cardano.Types.Mint
- Cardano.Types.MultiAsset
- Cardano.Types.NativeScript
- Cardano.Types.NetworkId
- Cardano.Types.NewConstitutionAction
- Cardano.Types.NoConfidenceAction
- Cardano.Types.OutputDatum
- Cardano.Types.ParameterChangeAction
- Cardano.Types.PaymentCredential
- Cardano.Types.PaymentPubKeyHash
- Cardano.Types.PlutusData
- Cardano.Types.PlutusScript
- Cardano.Types.PoolMetadata
- Cardano.Types.PoolMetadataHash
- Cardano.Types.PoolParams
- Cardano.Types.PoolPubKeyHash
- Cardano.Types.PoolVotingThresholds
- Cardano.Types.PrivateKey
- Cardano.Types.ProtocolParamUpdate
- Cardano.Types.ProtocolParameters
- Cardano.Types.ProtocolVersion
- Cardano.Types.PublicKey
- Cardano.Types.Rational
- Cardano.Types.RawBytes
- Cardano.Types.Redeemer
- Cardano.Types.RedeemerDatum
- Cardano.Types.RedeemerTag
- Cardano.Types.Relay
- Cardano.Types.RewardAddress
- Cardano.Types.ScriptDataHash
- Cardano.Types.ScriptHash
- Cardano.Types.ScriptRef
- Cardano.Types.Slot
- Cardano.Types.StakeCredential
- Cardano.Types.StakePubKeyHash
- Cardano.Types.StakeValidatorHash
- Cardano.Types.SystemStart
- Cardano.Types.Transaction
- Cardano.Types.TransactionBody
- Cardano.Types.TransactionHash
- Cardano.Types.TransactionInput
- Cardano.Types.TransactionMetadatum
- Cardano.Types.TransactionOutput
- Cardano.Types.TransactionUnspentOutput
- Cardano.Types.TransactionWitnessSet
- Cardano.Types.TreasuryWithdrawalsAction
- Cardano.Types.URL
- Cardano.Types.UnitInterval
- Cardano.Types.UpdateCommitteeAction
- Cardano.Types.UtxoMap
- Cardano.Types.VRFKeyHash
- Cardano.Types.Value
- Cardano.Types.Vkey
- Cardano.Types.Vkeywitness
- Cardano.Types.Vote
- Cardano.Types.Voter
- Cardano.Types.VotingProcedure
- Cardano.Types.VotingProcedures
- Cardano.Types.VotingProposal
- Cardano.Wallet.Cip30
- Cardano.Wallet.Cip30.TypeSafe
- Cardano.Wallet.Cip30Mock
- Cardano.Wallet.Cip95
- Cardano.Wallet.Cip95.TypeSafe
- Cardano.Wallet.HD
- Cardano.Wallet.Key
- Contract.Address
- Contract.AuxiliaryData
- Contract.Backend.Ogmios
- Contract.BalanceTxConstraints
- Contract.CborBytes
- Contract.Chain
- Contract.ClientError
- Contract.Config
- Contract.Credential
- Contract.Crypto.Secp256k1
- Contract.Crypto.Secp256k1.ECDSA
- Contract.Crypto.Secp256k1.Schnorr
- Contract.Crypto.Secp256k1.Utils
- Contract.Hashing
- Contract.JsSdk
- Contract.Keys
- Contract.Log
- Contract.Metadata
- Contract.Monad
- Contract.Numeric.BigNum
- Contract.Numeric.Convert
- Contract.Numeric.Rational
- Contract.Plutarch.Types
- Contract.PlutusData
- Contract.Prelude
- Contract.Prim.ByteArray
- Contract.ProtocolParameters
- Contract.ScriptLookups
- Contract.Scripts
- Contract.Staking
- Contract.Sync
- Contract.Test
- Contract.Test.Assert
- Contract.Test.Blockfrost
- Contract.Test.Cip30Mock
- Contract.Test.E2E
- Contract.Test.Mote
- Contract.Test.Mote.ConsoleReporter
- Contract.Test.Testnet
- Contract.Test.Utils
- Contract.TextEnvelope
- Contract.Time
- Contract.Transaction
- Contract.TxConstraints
- Contract.UnbalancedTx
- Contract.Utxos
- Contract.Value
- Contract.Wallet
- Contract.Wallet.Key
- Contract.Wallet.KeyFile
- Control.Algebra.Properties
- Control.Alt
- Control.Alternative
- Control.Applicative
- Control.Apply
- Control.Biapplicative
- Control.Biapply
- Control.Bind
- Control.Category
- Control.Comonad
- Control.Comonad.Cofree
- Control.Comonad.Cofree.Class
- Control.Comonad.Cofree.Trans
- Control.Comonad.Env
- Control.Comonad.Env.Class
- Control.Comonad.Env.Trans
- Control.Comonad.Store
- Control.Comonad.Store.Class
- Control.Comonad.Store.Trans
- Control.Comonad.Traced
- Control.Comonad.Traced.Class
- Control.Comonad.Traced.Trans
- Control.Comonad.Trans.Class
- Control.Extend
- Control.Lazy
- Control.Monad
- Control.Monad.Cont
- Control.Monad.Cont.Class
- Control.Monad.Cont.Trans
- Control.Monad.Error.Class
- Control.Monad.Except
- Control.Monad.Except.Checked
- Control.Monad.Except.Trans
- Control.Monad.Fork.Class
- Control.Monad.Free
- Control.Monad.Free.Class
- Control.Monad.Free.Trans
- Control.Monad.Gen
- Control.Monad.Gen.Class
- Control.Monad.Gen.Common
- Control.Monad.Identity.Trans
- Control.Monad.List.Trans
- Control.Monad.Logger.Class
- Control.Monad.Logger.Trans
- Control.Monad.Maybe.Trans
- Control.Monad.Morph
- Control.Monad.RWS
- Control.Monad.RWS.Trans
- Control.Monad.Reader
- Control.Monad.Reader.Class
- Control.Monad.Reader.Trans
- Control.Monad.Rec.Class
- Control.Monad.ST
- Control.Monad.ST.Class
- Control.Monad.ST.Global
- Control.Monad.ST.Internal
- Control.Monad.ST.Ref
- Control.Monad.ST.Uncurried
- Control.Monad.State
- Control.Monad.State.Class
- Control.Monad.State.Trans
- Control.Monad.Trampoline
- Control.Monad.Trans.Class
- Control.Monad.Writer
- Control.Monad.Writer.Class
- Control.Monad.Writer.Trans
- Control.MonadPlus
- Control.Parallel
- Control.Parallel.Class
- Control.Plus
- Control.Promise
- Control.Safely
- Control.Semigroupoid
- Ctl.Examples.AdditionalUtxos
- Ctl.Examples.AlwaysMints
- Ctl.Examples.AlwaysSucceeds
- Ctl.Examples.AwaitTxConfirmedWithTimeout
- Ctl.Examples.BalanceTxConstraints
- Ctl.Examples.ByUrl
- Ctl.Examples.ChangeGeneration
- Ctl.Examples.Cip30
- Ctl.Examples.ContractTestUtils
- Ctl.Examples.Datums
- Ctl.Examples.DropTokens
- Ctl.Examples.ECDSA
- Ctl.Examples.ExUnits
- Ctl.Examples.Gov.DelegateVoteAbstain
- Ctl.Examples.Gov.Internal.Common
- Ctl.Examples.Gov.ManageDrep
- Ctl.Examples.Gov.ManageDrepScript
- Ctl.Examples.Gov.SubmitVote
- Ctl.Examples.Gov.SubmitVoteScript
- Ctl.Examples.Helpers
- Ctl.Examples.IncludeDatum
- Ctl.Examples.KeyWallet.Cip30
- Ctl.Examples.KeyWallet.DelegateVoteAbstain
- Ctl.Examples.KeyWallet.Internal.Cip30Contract
- Ctl.Examples.KeyWallet.Internal.Cip30HtmlForm
- Ctl.Examples.KeyWallet.Internal.Contract
- Ctl.Examples.KeyWallet.Internal.HtmlForm
- Ctl.Examples.KeyWallet.Internal.Pkh2PkhContract
- Ctl.Examples.KeyWallet.Internal.Pkh2PkhHtmlForm
- Ctl.Examples.KeyWallet.ManageDrep
- Ctl.Examples.KeyWallet.MintsAndSendsToken
- Ctl.Examples.KeyWallet.Pkh2Pkh
- Ctl.Examples.KeyWallet.SignMultiple
- Ctl.Examples.KeyWallet.SubmitVote
- Ctl.Examples.Lose7Ada
- Ctl.Examples.ManyAssets
- Ctl.Examples.MintsMultipleTokens
- Ctl.Examples.MultipleRedeemers
- Ctl.Examples.NativeScriptMints
- Ctl.Examples.OneShotMinting
- Ctl.Examples.PaysWithDatum
- Ctl.Examples.Pkh2Pkh
- Ctl.Examples.PlutusV2.AlwaysSucceeds
- Ctl.Examples.PlutusV2.InlineDatum
- Ctl.Examples.PlutusV2.OneShotMinting
- Ctl.Examples.PlutusV2.ReferenceInputsAndScripts
- Ctl.Examples.PlutusV2.Scripts.AlwaysMints
- Ctl.Examples.PlutusV2.Scripts.AlwaysSucceeds
- Ctl.Examples.PlutusV3.Scripts.AlwaysMints
- Ctl.Examples.Schnorr
- Ctl.Examples.SendsToken
- Ctl.Examples.SignData
- Ctl.Examples.SignMultiple
- Ctl.Examples.TxChaining
- Ctl.Examples.Utxos
- Ctl.Examples.Wallet
- Ctl.Internal.BalanceTx
- Ctl.Internal.BalanceTx.Sync
- Ctl.Internal.Cardano.TextEnvelope
- Ctl.Internal.CardanoCli
- Ctl.Internal.Contract
- Ctl.Internal.Contract.AwaitTxConfirmed
- Ctl.Internal.Contract.Hooks
- Ctl.Internal.Contract.LogParams
- Ctl.Internal.Contract.Monad
- Ctl.Internal.Contract.Provider
- Ctl.Internal.Contract.ProviderBackend
- Ctl.Internal.Contract.Sign
- Ctl.Internal.Contract.WaitUntilSlot
- Ctl.Internal.Contract.Wallet
- Ctl.Internal.Error
- Ctl.Internal.FfiHelpers
- Ctl.Internal.Helpers
- Ctl.Internal.Helpers.Formatter
- Ctl.Internal.Helpers.UniqueId
- Ctl.Internal.IsData
- Ctl.Internal.Logging
- Ctl.Internal.Metadata.MetadataType
- Ctl.Internal.NativeScripts
- Ctl.Internal.ProcessConstraints
- Ctl.Internal.ProcessConstraints.Error
- Ctl.Internal.ProcessConstraints.State
- Ctl.Internal.ServerConfig
- Ctl.Internal.Spawn
- Ctl.Internal.Test.ConsoleReporter
- Ctl.Internal.Test.ContractTest
- Ctl.Internal.Test.E2E.Browser
- Ctl.Internal.Test.E2E.Feedback
- Ctl.Internal.Test.E2E.Feedback.Browser
- Ctl.Internal.Test.E2E.Feedback.Hooks
- Ctl.Internal.Test.E2E.Feedback.Node
- Ctl.Internal.Test.E2E.Options
- Ctl.Internal.Test.E2E.Route
- Ctl.Internal.Test.E2E.Runner
- Ctl.Internal.Test.E2E.Types
- Ctl.Internal.Test.E2E.Wallets
- Ctl.Internal.Test.KeyDir
- Ctl.Internal.Test.UtxoDistribution
- Ctl.Internal.Testnet.Contract
- Ctl.Internal.Testnet.DistributeFunds
- Ctl.Internal.Testnet.Server
- Ctl.Internal.Testnet.Types
- Ctl.Internal.Testnet.Utils
- Ctl.Internal.Transaction
- Ctl.Internal.TxOutput
- Ctl.Internal.Types.Cbor
- Ctl.Internal.Types.Interval
- Ctl.Internal.Types.MetadataLabel
- Ctl.Internal.Types.ScriptLookups
- Ctl.Internal.Types.TxBalancer
- Ctl.Internal.Types.TxConstraints
- Ctl.Internal.Types.UsedTxOuts
- Ctl.Internal.Wallet
- Ctl.Internal.Wallet.Cip30
- Ctl.Internal.Wallet.Cip30Mock
- Ctl.Internal.Wallet.KeyFile
- Ctl.Internal.Wallet.Spec
- Data.Align
- Data.Argonaut
- Data.Argonaut.Core
- Data.Argonaut.Decode
- Data.Argonaut.Decode.Class
- Data.Argonaut.Decode.Combinators
- Data.Argonaut.Decode.Decoders
- Data.Argonaut.Decode.Error
- Data.Argonaut.Decode.Parser
- Data.Argonaut.Encode
- Data.Argonaut.Encode.Class
- Data.Argonaut.Encode.Combinators
- Data.Argonaut.Encode.Encoders
- Data.Argonaut.Gen
- Data.Argonaut.JCursor
- Data.Argonaut.JCursor.Gen
- Data.Argonaut.Parser
- Data.Argonaut.Prisms
- Data.Argonaut.Traversals
- Data.Array
- Data.Array.NonEmpty
- Data.Array.NonEmpty.Internal
- Data.Array.Partial
- Data.Array.ST
- Data.Array.ST.Iterator
- Data.Array.ST.Partial
- Data.ArrayBuffer.Types
- Data.Bifoldable
- Data.Bifunctor
- Data.Bifunctor.Join
- Data.BigNumber
- Data.Bitraversable
- Data.Boolean
- Data.BooleanAlgebra
- Data.Bounded
- Data.Bounded.Generic
- Data.ByteArray
- Data.CatList
- Data.CatQueue
- Data.Char
- Data.Char.Gen
- Data.Char.Utils
- Data.CodePoint.Unicode
- Data.CodePoint.Unicode.Internal
- Data.CodePoint.Unicode.Internal.Casing
- Data.CommutativeRing
- Data.Comparison
- Data.Const
- Data.Coyoneda
- Data.Date
- Data.Date.Component
- Data.Date.Component.Gen
- Data.Date.Gen
- Data.DateTime
- Data.DateTime.Gen
- Data.DateTime.Instant
- Data.Decidable
- Data.Decide
- Data.Distributive
- Data.Divide
- Data.Divisible
- Data.DivisionRing
- Data.Either
- Data.Either.Inject
- Data.Either.Nested
- Data.Enum
- Data.Enum.Gen
- Data.Enum.Generic
- Data.Eq
- Data.Eq.Generic
- Data.Equivalence
- Data.EuclideanRing
- Data.Exists
- Data.Field
- Data.Foldable
- Data.FoldableWithIndex
- Data.FormURLEncoded
- Data.Formatter.DateTime
- Data.Formatter.Internal
- Data.Formatter.Interval
- Data.Formatter.Number
- Data.Formatter.Parser.Interval
- Data.Formatter.Parser.Number
- Data.Formatter.Parser.Utils
- Data.Function
- Data.Function.Memoize
- Data.Function.Uncurried
- Data.Functor
- Data.Functor.App
- Data.Functor.Clown
- Data.Functor.Compose
- Data.Functor.Contravariant
- Data.Functor.Coproduct
- Data.Functor.Coproduct.Inject
- Data.Functor.Coproduct.Nested
- Data.Functor.Costar
- Data.Functor.Flip
- Data.Functor.Invariant
- Data.Functor.Joker
- Data.Functor.Mu
- Data.Functor.Nu
- Data.Functor.Product
- Data.Functor.Product.Nested
- Data.Functor.Product2
- Data.Functor.Variant
- Data.FunctorWithIndex
- Data.Generic.Rep
- Data.HTTP.Method
- Data.HeytingAlgebra
- Data.HeytingAlgebra.Generic
- Data.Identity
- Data.Int
- Data.Int.Bits
- Data.Interval
- Data.Interval.Duration
- Data.Interval.Duration.Iso
- Data.JSDate
- Data.Lattice
- Data.Lattice.Verify
- Data.Lazy
- Data.Lens
- Data.Lens.AffineTraversal
- Data.Lens.At
- Data.Lens.Common
- Data.Lens.Fold
- Data.Lens.Fold.Partial
- Data.Lens.Getter
- Data.Lens.Grate
- Data.Lens.Index
- Data.Lens.Indexed
- Data.Lens.Internal.Bazaar
- Data.Lens.Internal.Exchange
- Data.Lens.Internal.Focusing
- Data.Lens.Internal.Forget
- Data.Lens.Internal.Grating
- Data.Lens.Internal.Indexed
- Data.Lens.Internal.Market
- Data.Lens.Internal.Re
- Data.Lens.Internal.Shop
- Data.Lens.Internal.Stall
- Data.Lens.Internal.Tagged
- Data.Lens.Internal.Wander
- Data.Lens.Internal.Zipping
- Data.Lens.Iso
- Data.Lens.Iso.Newtype
- Data.Lens.Lens
- Data.Lens.Lens.Product
- Data.Lens.Lens.Tuple
- Data.Lens.Lens.Unit
- Data.Lens.Lens.Void
- Data.Lens.Prism
- Data.Lens.Prism.Coproduct
- Data.Lens.Prism.Either
- Data.Lens.Prism.Maybe
- Data.Lens.Record
- Data.Lens.Setter
- Data.Lens.Traversal
- Data.Lens.Types
- Data.Lens.Zoom
- Data.List
- Data.List.Internal
- Data.List.Lazy
- Data.List.Lazy.NonEmpty
- Data.List.Lazy.Types
- Data.List.NonEmpty
- Data.List.Partial
- Data.List.Types
- Data.List.ZipList
- Data.Log.Filter
- Data.Log.Formatter.JSON
- Data.Log.Formatter.Pretty
- Data.Log.Level
- Data.Log.Message
- Data.Log.Tag
- Data.Map
- Data.Map.Gen
- Data.Map.Internal
- Data.Maybe
- Data.Maybe.First
- Data.Maybe.Last
- Data.MediaType
- Data.MediaType.Common
- Data.Monoid
- Data.Monoid.Additive
- Data.Monoid.Alternate
- Data.Monoid.Conj
- Data.Monoid.Disj
- Data.Monoid.Dual
- Data.Monoid.Endo
- Data.Monoid.Generic
- Data.Monoid.Multiplicative
- Data.NaturalTransformation
- Data.Newtype
- Data.NonEmpty
- Data.Nullable
- Data.Number
- Data.Number.Approximate
- Data.Number.Format
- Data.Op
- Data.Options
- Data.Ord
- Data.Ord.Down
- Data.Ord.Generic
- Data.Ord.Max
- Data.Ord.Min
- Data.Ordering
- Data.Posix
- Data.Posix.Signal
- Data.Predicate
- Data.Profunctor
- Data.Profunctor.Choice
- Data.Profunctor.Closed
- Data.Profunctor.Cochoice
- Data.Profunctor.Costrong
- Data.Profunctor.Join
- Data.Profunctor.Split
- Data.Profunctor.Star
- Data.Profunctor.Strong
- Data.Ratio
- Data.Rational
- Data.Reflectable
- Data.Ring
- Data.Ring.Generic
- Data.Semigroup
- Data.Semigroup.First
- Data.Semigroup.Foldable
- Data.Semigroup.Generic
- Data.Semigroup.Last
- Data.Semigroup.Traversable
- Data.Semiring
- Data.Semiring.Generic
- Data.Set
- Data.Set.NonEmpty
- Data.Show
- Data.Show.Generic
- Data.String
- Data.String.CaseInsensitive
- Data.String.CodePoints
- Data.String.CodeUnits
- Data.String.Common
- Data.String.Gen
- Data.String.NonEmpty
- Data.String.NonEmpty.CaseInsensitive
- Data.String.NonEmpty.CodePoints
- Data.String.NonEmpty.CodeUnits
- Data.String.NonEmpty.Internal
- Data.String.Pattern
- Data.String.Regex
- Data.String.Regex.Flags
- Data.String.Regex.Unsafe
- Data.String.Unicode
- Data.String.Unsafe
- Data.String.Utils
- Data.Symbol
- Data.TacitString
- Data.TextDecoder
- Data.TextEncoder
- Data.These
- Data.These.Gen
- Data.Time
- Data.Time.Component
- Data.Time.Component.Gen
- Data.Time.Duration
- Data.Time.Duration.Gen
- Data.Time.Gen
- Data.Traversable
- Data.Traversable.Accum
- Data.Traversable.Accum.Internal
- Data.TraversableWithIndex
- Data.Tuple
- Data.Tuple.Nested
- Data.Typelevel.Bool
- Data.Typelevel.Num
- Data.Typelevel.Num.Aliases
- Data.Typelevel.Num.Ops
- Data.Typelevel.Num.Reps
- Data.Typelevel.Num.Sets
- Data.Typelevel.Undefined
- Data.UInt
- Data.UInt.Gen
- Data.Unfoldable
- Data.Unfoldable1
- Data.Unit
- Data.Variant
- Data.Variant.Internal
- Data.Void
- Data.Yoneda
- Debug
- Effect
- Effect.AVar
- Effect.Aff
- Effect.Aff.AVar
- Effect.Aff.Class
- Effect.Aff.Compat
- Effect.Aff.Retry
- Effect.Class
- Effect.Class.Console
- Effect.Console
- Effect.Exception
- Effect.Exception.Unsafe
- Effect.Now
- Effect.Random
- Effect.Ref
- Effect.Uncurried
- Effect.Unsafe
- ExitCodes
- Foreign
- Foreign.Index
- Foreign.Keys
- Foreign.Object
- Foreign.Object.Gen
- Foreign.Object.ST
- Foreign.Object.ST.Unsafe
- Foreign.Object.Unsafe
- Heterogeneous.Folding
- Heterogeneous.Mapping
- Internal.CardanoCli.Provider
- JS.BigInt
- JSURI
- Literals
- Literals.Boolean
- Literals.Int
- Literals.Literal
- Literals.Null
- Literals.Number
- Literals.String
- Literals.Undefined
- Mote
- Mote.Description
- Mote.Entry
- Mote.Monad
- Mote.Plan
- Mote.TestPlanM
- Noble.Secp256k1.ECDSA
- Noble.Secp256k1.Schnorr
- Noble.Secp256k1.Utils
- Node.Buffer
- Node.Buffer.Class
- Node.Buffer.Immutable
- Node.Buffer.Internal
- Node.Buffer.ST
- Node.Buffer.Types
- Node.ChildProcess
- Node.Crypto
- Node.Crypto.Cipher
- Node.Crypto.Decipher
- Node.Crypto.Hash
- Node.Crypto.Hmac
- Node.Encoding
- Node.FS
- Node.FS.Aff
- Node.FS.Async
- Node.FS.Perms
- Node.FS.Stats
- Node.FS.Stream
- Node.FS.Sync
- Node.HTTP
- Node.HTTP.Client
- Node.HTTP.Secure
- Node.Net
- Node.Net.Server
- Node.Net.Socket
- Node.Path
- Node.Platform
- Node.Process
- Node.ReadLine
- Node.Stream
- Node.Stream.Aff
- Node.Stream.Aff.Internal
- Node.URL
- Options.Applicative
- Options.Applicative.BashCompletion
- Options.Applicative.Builder
- Options.Applicative.Builder.Completer
- Options.Applicative.Builder.Internal
- Options.Applicative.Common
- Options.Applicative.Extra
- Options.Applicative.Help
- Options.Applicative.Help.Chunk
- Options.Applicative.Help.Core
- Options.Applicative.Help.Levenshtein
- Options.Applicative.Help.Pretty
- Options.Applicative.Help.Types
- Options.Applicative.Internal
- Options.Applicative.Internal.Utils
- Options.Applicative.Types
- PSCI.Support
- Parsing
- Parsing.Combinators
- Parsing.Combinators.Array
- Parsing.Expr
- Parsing.Indent
- Parsing.Language
- Parsing.String
- Parsing.String.Basic
- Parsing.String.Replace
- Parsing.Token
- Partial
- Partial.Unsafe
- Pipes
- Pipes.Core
- Pipes.Internal
- Pipes.ListT
- Pipes.Prelude
- Prelude
- Prim
- Prim.Boolean
- Prim.Coerce
- Prim.Int
- Prim.Ordering
- Prim.Row
- Prim.RowList
- Prim.Symbol
- Prim.TypeError
- Random.LCG
- Record
- Record.Builder
- Record.Unsafe
- Record.Unsafe.Union
- Safe.Coerce
- Scaffold
- Scaffold.Main
- Scaffold.Test.Blockfrost
- Scaffold.Test.E2E
- Scaffold.Test.E2E.Serve
- Test.Assert
- Test.Ctl.ApplyArgs
- Test.Ctl.BalanceTx.ChangeGeneration
- Test.Ctl.BalanceTx.Collateral
- Test.Ctl.BalanceTx.Time
- Test.Ctl.Blockfrost
- Test.Ctl.Blockfrost.Aeson.Suite
- Test.Ctl.Blockfrost.Contract
- Test.Ctl.Blockfrost.GenerateFixtures.ChainTip
- Test.Ctl.Blockfrost.GenerateFixtures.EraSummaries
- Test.Ctl.Blockfrost.GenerateFixtures.Helpers
- Test.Ctl.Blockfrost.GenerateFixtures.NativeScript
- Test.Ctl.Blockfrost.GenerateFixtures.ProtocolParameters
- Test.Ctl.Blockfrost.GenerateFixtures.ScriptInfo
- Test.Ctl.Blockfrost.GenerateFixtures.SystemStart
- Test.Ctl.CoinSelection
- Test.Ctl.CoinSelection.Arbitrary
- Test.Ctl.CoinSelection.RoundRobin
- Test.Ctl.CoinSelection.SelectionState
- Test.Ctl.CoinSelection.UtxoIndex
- Test.Ctl.CslGc
- Test.Ctl.Data
- Test.Ctl.Data.Interval
- Test.Ctl.E2E
- Test.Ctl.E2E.Route
- Test.Ctl.Fixtures
- Test.Ctl.Fixtures.CostModels
- Test.Ctl.Hashing
- Test.Ctl.Integration
- Test.Ctl.Internal.Hashing
- Test.Ctl.Internal.Plutus.Credential
- Test.Ctl.Internal.Plutus.Time
- Test.Ctl.KupmiosM.AffInterface
- Test.Ctl.Logging
- Test.Ctl.Main
- Test.Ctl.NativeScript
- Test.Ctl.Ogmios.Aeson
- Test.Ctl.Ogmios.EvaluateTx
- Test.Ctl.Ogmios.GenerateFixtures
- Test.Ctl.Partition
- Test.Ctl.PrivateKey
- Test.Ctl.ProtocolParameters
- Test.Ctl.Serialization
- Test.Ctl.Serialization.Hash
- Test.Ctl.Testnet
- Test.Ctl.Testnet.ClusterParameters
- Test.Ctl.Testnet.Common
- Test.Ctl.Testnet.Contract
- Test.Ctl.Testnet.Contract.Assert
- Test.Ctl.Testnet.Contract.Mnemonics
- Test.Ctl.Testnet.Contract.OgmiosMempool
- Test.Ctl.Testnet.DistributeFunds
- Test.Ctl.Testnet.ExUnits
- Test.Ctl.Testnet.Gov
- Test.Ctl.Testnet.Logging
- Test.Ctl.Testnet.SameWallets
- Test.Ctl.Testnet.Staking
- Test.Ctl.Testnet.Utils
- Test.Ctl.Testnet.UtxoDistribution
- Test.Ctl.Types.Interval
- Test.Ctl.Types.Ipv6
- Test.Ctl.Types.TokenName
- Test.Ctl.Types.Transaction
- Test.Ctl.Unit
- Test.Ctl.UsedTxOuts
- Test.Ctl.Utils
- Test.Ctl.Utils.DrainWallets
- Test.Ctl.Wallet.Bip32
- Test.QuickCheck
- Test.QuickCheck.Arbitrary
- Test.QuickCheck.Combinators
- Test.QuickCheck.Gen
- Test.QuickCheck.Laws
- Test.QuickCheck.Laws.Control
- Test.QuickCheck.Laws.Control.Align
- Test.QuickCheck.Laws.Control.Alignable
- Test.QuickCheck.Laws.Control.Alt
- Test.QuickCheck.Laws.Control.Alternative
- Test.QuickCheck.Laws.Control.Applicative
- Test.QuickCheck.Laws.Control.Apply
- Test.QuickCheck.Laws.Control.Bind
- Test.QuickCheck.Laws.Control.Category
- Test.QuickCheck.Laws.Control.Comonad
- Test.QuickCheck.Laws.Control.Crosswalk
- Test.QuickCheck.Laws.Control.Extend
- Test.QuickCheck.Laws.Control.Monad
- Test.QuickCheck.Laws.Control.MonadPlus
- Test.QuickCheck.Laws.Control.Plus
- Test.QuickCheck.Laws.Control.Semigroupoid
- Test.QuickCheck.Laws.Data
- Test.QuickCheck.Laws.Data.BooleanAlgebra
- Test.QuickCheck.Laws.Data.Bounded
- Test.QuickCheck.Laws.Data.BoundedEnum
- Test.QuickCheck.Laws.Data.CommutativeRing
- Test.QuickCheck.Laws.Data.DivisionRing
- Test.QuickCheck.Laws.Data.Enum
- Test.QuickCheck.Laws.Data.Eq
- Test.QuickCheck.Laws.Data.EuclideanRing
- Test.QuickCheck.Laws.Data.Field
- Test.QuickCheck.Laws.Data.Foldable
- Test.QuickCheck.Laws.Data.Functor
- Test.QuickCheck.Laws.Data.FunctorWithIndex
- Test.QuickCheck.Laws.Data.HeytingAlgebra
- Test.QuickCheck.Laws.Data.Monoid
- Test.QuickCheck.Laws.Data.Ord
- Test.QuickCheck.Laws.Data.Ring
- Test.QuickCheck.Laws.Data.Semigroup
- Test.QuickCheck.Laws.Data.Semiring
- Test.Scaffold.Main
- Test.Spec
- Test.Spec.Assertions
- Test.Spec.Assertions.String
- Test.Spec.Console
- Test.Spec.QuickCheck
- Test.Spec.Reporter
- Test.Spec.Reporter.Base
- Test.Spec.Reporter.Console
- Test.Spec.Reporter.ConsoleReporter
- Test.Spec.Reporter.Dot
- Test.Spec.Reporter.Spec
- Test.Spec.Reporter.Tap
- Test.Spec.Reporter.TeamCity
- Test.Spec.Result
- Test.Spec.Runner
- Test.Spec.Runner.Event
- Test.Spec.Speed
- Test.Spec.Style
- Test.Spec.Summary
- Test.Spec.Tree
- Text.PrettyPrint.Leijen
- Toppokki
- Type.Data.Boolean
- Type.Data.Ordering
- Type.Data.Symbol
- Type.Equality
- Type.Function
- Type.Prelude
- Type.Proxy
- Type.Row
- Type.Row.Homogeneous
- Type.RowList
- Unsafe.Coerce
- Untagged.Castable
- Untagged.TypeCheck
- Untagged.Union
- Web.DOM
- Web.DOM.CharacterData
- Web.DOM.ChildNode
- Web.DOM.Comment
- Web.DOM.DOMTokenList
- Web.DOM.Document
- Web.DOM.DocumentFragment
- Web.DOM.DocumentType
- Web.DOM.Element
- Web.DOM.HTMLCollection
- Web.DOM.Internal.Types
- Web.DOM.MutationObserver
- Web.DOM.MutationRecord
- Web.DOM.Node
- Web.DOM.NodeList
- Web.DOM.NodeType
- Web.DOM.NonDocumentTypeChildNode
- Web.DOM.NonElementParentNode
- Web.DOM.ParentNode
- Web.DOM.ProcessingInstruction
- Web.DOM.ShadowRoot
- Web.DOM.Text
- Web.Event.CustomEvent
- Web.Event.Event
- Web.Event.EventPhase
- Web.Event.EventTarget
- Web.Event.Internal.Types
- Web.File.Blob
- Web.File.File
- Web.File.FileList
- Web.File.FileReader
- Web.File.FileReader.ReadyState
- Web.File.Url
- Web.HTML
- Web.HTML.Common
- Web.HTML.Event.BeforeUnloadEvent
- Web.HTML.Event.BeforeUnloadEvent.EventTypes
- Web.HTML.Event.DataTransfer
- Web.HTML.Event.DataTransfer.DataTransferItem
- Web.HTML.Event.DragEvent
- Web.HTML.Event.DragEvent.EventTypes
- Web.HTML.Event.ErrorEvent
- Web.HTML.Event.EventTypes
- Web.HTML.Event.HashChangeEvent
- Web.HTML.Event.HashChangeEvent.EventTypes
- Web.HTML.Event.PageTransitionEvent
- Web.HTML.Event.PageTransitionEvent.EventTypes
- Web.HTML.Event.PopStateEvent
- Web.HTML.Event.PopStateEvent.EventTypes
- Web.HTML.Event.TrackEvent
- Web.HTML.Event.TrackEvent.EventTypes
- Web.HTML.HTMLAnchorElement
- Web.HTML.HTMLAreaElement
- Web.HTML.HTMLAudioElement
- Web.HTML.HTMLBRElement
- Web.HTML.HTMLBaseElement
- Web.HTML.HTMLBodyElement
- Web.HTML.HTMLButtonElement
- Web.HTML.HTMLCanvasElement
- Web.HTML.HTMLDListElement
- Web.HTML.HTMLDataElement
- Web.HTML.HTMLDataListElement
- Web.HTML.HTMLDivElement
- Web.HTML.HTMLDocument
- Web.HTML.HTMLDocument.ReadyState
- Web.HTML.HTMLDocument.VisibilityState
- Web.HTML.HTMLElement
- Web.HTML.HTMLEmbedElement
- Web.HTML.HTMLFieldSetElement
- Web.HTML.HTMLFormElement
- Web.HTML.HTMLHRElement
- Web.HTML.HTMLHeadElement
- Web.HTML.HTMLHeadingElement
- Web.HTML.HTMLHtmlElement
- Web.HTML.HTMLHyperlinkElementUtils
- Web.HTML.HTMLIFrameElement
- Web.HTML.HTMLImageElement
- Web.HTML.HTMLImageElement.CORSMode
- Web.HTML.HTMLImageElement.DecodingHint
- Web.HTML.HTMLImageElement.Laziness
- Web.HTML.HTMLInputElement
- Web.HTML.HTMLKeygenElement
- Web.HTML.HTMLLIElement
- Web.HTML.HTMLLabelElement
- Web.HTML.HTMLLegendElement
- Web.HTML.HTMLLinkElement
- Web.HTML.HTMLMapElement
- Web.HTML.HTMLMediaElement
- Web.HTML.HTMLMediaElement.CanPlayType
- Web.HTML.HTMLMediaElement.NetworkState
- Web.HTML.HTMLMediaElement.ReadyState
- Web.HTML.HTMLMetaElement
- Web.HTML.HTMLMeterElement
- Web.HTML.HTMLModElement
- Web.HTML.HTMLOListElement
- Web.HTML.HTMLObjectElement
- Web.HTML.HTMLOptGroupElement
- Web.HTML.HTMLOptionElement
- Web.HTML.HTMLOutputElement
- Web.HTML.HTMLParagraphElement
- Web.HTML.HTMLParamElement
- Web.HTML.HTMLPreElement
- Web.HTML.HTMLProgressElement
- Web.HTML.HTMLQuoteElement
- Web.HTML.HTMLScriptElement
- Web.HTML.HTMLSelectElement
- Web.HTML.HTMLSourceElement
- Web.HTML.HTMLSpanElement
- Web.HTML.HTMLStyleElement
- Web.HTML.HTMLTableCaptionElement
- Web.HTML.HTMLTableCellElement
- Web.HTML.HTMLTableColElement
- Web.HTML.HTMLTableDataCellElement
- Web.HTML.HTMLTableElement
- Web.HTML.HTMLTableHeaderCellElement
- Web.HTML.HTMLTableRowElement
- Web.HTML.HTMLTableSectionElement
- Web.HTML.HTMLTemplateElement
- Web.HTML.HTMLTextAreaElement
- Web.HTML.HTMLTimeElement
- Web.HTML.HTMLTitleElement
- Web.HTML.HTMLTrackElement
- Web.HTML.HTMLTrackElement.ReadyState
- Web.HTML.HTMLUListElement
- Web.HTML.HTMLVideoElement
- Web.HTML.History
- Web.HTML.Location
- Web.HTML.Navigator
- Web.HTML.SelectionMode
- Web.HTML.ValidityState
- Web.HTML.Window
- Web.Internal.FFI
- Web.Storage.Event.StorageEvent
- Web.Storage.Storage
- Web.XHR.EventTypes
- Web.XHR.FormData
- Web.XHR.ProgressEvent
- Web.XHR.ReadyState
- Web.XHR.ResponseType
- Web.XHR.XMLHttpRequest
- Web.XHR.XMLHttpRequestUpload
The
Functorinstance allows functions to transform the contents of aRightwith the<$>operator:Leftvalues are untouched: